Stolarsky's conjecture and the sum of digits of polynomial values
Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and gen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2011-01, Vol.139 (1), p.39-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 139 |
creator | HARE, KEVIN G. LAISHRAM, SHANTA STOLL, THOMAS |
description | Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h > 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε > 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) < ε. Further, we give lower bounds for the number of n < N such that s q (p(n))/s q < ε. |
doi_str_mv | 10.1090/S0002-9939-2010-10591-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01278726v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41059195</jstor_id><sourcerecordid>41059195</sourcerecordid><originalsourceid>FETCH-LOGICAL-a501t-13483a6357897511c725f9def1e6382571afe43e7aa79333f8ed38754f6504bb3</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhgdRsFYfQcxGxMXoXDK3ZSlqhYKL6no4TWZsapIpmbTQtzdpJGtXc_m__xz4ELqj5IkSQ55XhBCGjeEGM0IJpkQYis0ZmlCiNZaayXM0GaFLdBXjtntSk6oJmq3aUEITf44PMclCvXVZu29cAnWetBuXxH2VBJ_kxXfRxv62C-WxDlUBZXKAcu_iNbrwUEZ383dO0dfry-d8gZcfb-_z2RKDILTFlKeag-RCaaMEpZliwpvceeok10woCt6l3CkAZTjnXrucayVSLwVJ12s-RY_D3A2UdtcUFTRHG6Cwi9nS9n-EMqUVkwfasWpgsybE2Dg_FiixvTV7smZ7Iba3Zk_WrOma90NzBzGD0jdQZ0Uc64wrQ6SQHXc7cNvYhmbM09McI7qcDTlU8d_LfwGXOoM1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stolarsky's conjecture and the sum of digits of polynomial values</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HARE, KEVIN G. ; LAISHRAM, SHANTA ; STOLL, THOMAS</creator><creatorcontrib>HARE, KEVIN G. ; LAISHRAM, SHANTA ; STOLL, THOMAS</creatorcontrib><description>Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h > 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε > 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) < ε. Further, we give lower bounds for the number of n < N such that s q (p(n))/s q < ε.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2010-10591-9</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Coefficients ; Constant coefficients ; Exact sciences and technology ; General mathematics ; General, history and biography ; Integers ; Mathematical congruence ; Mathematical functions ; Mathematical sequences ; Mathematical theorems ; Mathematics ; Number Theory ; Polynomials ; Sciences and techniques of general use</subject><ispartof>Proceedings of the American Mathematical Society, 2011-01, Vol.139 (1), p.39-49</ispartof><rights>Copyright 2010, American Mathematical Society</rights><rights>2011 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a501t-13483a6357897511c725f9def1e6382571afe43e7aa79333f8ed38754f6504bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10591-9S0002-9939-2010-10591-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10591-9$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,780,784,803,832,885,4024,23324,23328,27923,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23790656$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01278726$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>HARE, KEVIN G.</creatorcontrib><creatorcontrib>LAISHRAM, SHANTA</creatorcontrib><creatorcontrib>STOLL, THOMAS</creatorcontrib><title>Stolarsky's conjecture and the sum of digits of polynomial values</title><title>Proceedings of the American Mathematical Society</title><description>Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h > 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε > 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) < ε. Further, we give lower bounds for the number of n < N such that s q (p(n))/s q < ε.</description><subject>Coefficients</subject><subject>Constant coefficients</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Integers</subject><subject>Mathematical congruence</subject><subject>Mathematical functions</subject><subject>Mathematical sequences</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKw0AUhgdRsFYfQcxGxMXoXDK3ZSlqhYKL6no4TWZsapIpmbTQtzdpJGtXc_m__xz4ELqj5IkSQ55XhBCGjeEGM0IJpkQYis0ZmlCiNZaayXM0GaFLdBXjtntSk6oJmq3aUEITf44PMclCvXVZu29cAnWetBuXxH2VBJ_kxXfRxv62C-WxDlUBZXKAcu_iNbrwUEZ383dO0dfry-d8gZcfb-_z2RKDILTFlKeag-RCaaMEpZliwpvceeok10woCt6l3CkAZTjnXrucayVSLwVJ12s-RY_D3A2UdtcUFTRHG6Cwi9nS9n-EMqUVkwfasWpgsybE2Dg_FiixvTV7smZ7Iba3Zk_WrOma90NzBzGD0jdQZ0Uc64wrQ6SQHXc7cNvYhmbM09McI7qcDTlU8d_LfwGXOoM1</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>HARE, KEVIN G.</creator><creator>LAISHRAM, SHANTA</creator><creator>STOLL, THOMAS</creator><general>American Mathematical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110101</creationdate><title>Stolarsky's conjecture and the sum of digits of polynomial values</title><author>HARE, KEVIN G. ; LAISHRAM, SHANTA ; STOLL, THOMAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a501t-13483a6357897511c725f9def1e6382571afe43e7aa79333f8ed38754f6504bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficients</topic><topic>Constant coefficients</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Integers</topic><topic>Mathematical congruence</topic><topic>Mathematical functions</topic><topic>Mathematical sequences</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARE, KEVIN G.</creatorcontrib><creatorcontrib>LAISHRAM, SHANTA</creatorcontrib><creatorcontrib>STOLL, THOMAS</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARE, KEVIN G.</au><au>LAISHRAM, SHANTA</au><au>STOLL, THOMAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stolarsky's conjecture and the sum of digits of polynomial values</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>139</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h > 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε > 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) < ε. Further, we give lower bounds for the number of n < N such that s q (p(n))/s q < ε.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2010-10591-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2011-01, Vol.139 (1), p.39-49 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01278726v1 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | Coefficients Constant coefficients Exact sciences and technology General mathematics General, history and biography Integers Mathematical congruence Mathematical functions Mathematical sequences Mathematical theorems Mathematics Number Theory Polynomials Sciences and techniques of general use |
title | Stolarsky's conjecture and the sum of digits of polynomial values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stolarsky's%20conjecture%20and%20the%20sum%20of%20digits%20of%20polynomial%20values&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=HARE,%20KEVIN%20G.&rft.date=2011-01-01&rft.volume=139&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-2010-10591-9&rft_dat=%3Cjstor_hal_p%3E41059195%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41059195&rfr_iscdi=true |