Stolarsky's conjecture and the sum of digits of polynomial values

Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2011-01, Vol.139 (1), p.39-49
Hauptverfasser: HARE, KEVIN G., LAISHRAM, SHANTA, STOLL, THOMAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 39
container_title Proceedings of the American Mathematical Society
container_volume 139
creator HARE, KEVIN G.
LAISHRAM, SHANTA
STOLL, THOMAS
description Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h > 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε > 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) < ε. Further, we give lower bounds for the number of n < N such that s q (p(n))/s q < ε.
doi_str_mv 10.1090/S0002-9939-2010-10591-9
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01278726v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41059195</jstor_id><sourcerecordid>41059195</sourcerecordid><originalsourceid>FETCH-LOGICAL-a501t-13483a6357897511c725f9def1e6382571afe43e7aa79333f8ed38754f6504bb3</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhgdRsFYfQcxGxMXoXDK3ZSlqhYKL6no4TWZsapIpmbTQtzdpJGtXc_m__xz4ELqj5IkSQ55XhBCGjeEGM0IJpkQYis0ZmlCiNZaayXM0GaFLdBXjtntSk6oJmq3aUEITf44PMclCvXVZu29cAnWetBuXxH2VBJ_kxXfRxv62C-WxDlUBZXKAcu_iNbrwUEZ383dO0dfry-d8gZcfb-_z2RKDILTFlKeag-RCaaMEpZliwpvceeok10woCt6l3CkAZTjnXrucayVSLwVJ12s-RY_D3A2UdtcUFTRHG6Cwi9nS9n-EMqUVkwfasWpgsybE2Dg_FiixvTV7smZ7Iba3Zk_WrOma90NzBzGD0jdQZ0Uc64wrQ6SQHXc7cNvYhmbM09McI7qcDTlU8d_LfwGXOoM1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stolarsky's conjecture and the sum of digits of polynomial values</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HARE, KEVIN G. ; LAISHRAM, SHANTA ; STOLL, THOMAS</creator><creatorcontrib>HARE, KEVIN G. ; LAISHRAM, SHANTA ; STOLL, THOMAS</creatorcontrib><description>Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h &gt; 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε &gt; 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) &lt; ε. Further, we give lower bounds for the number of n &lt; N such that s q (p(n))/s q &lt; ε.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2010-10591-9</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>Coefficients ; Constant coefficients ; Exact sciences and technology ; General mathematics ; General, history and biography ; Integers ; Mathematical congruence ; Mathematical functions ; Mathematical sequences ; Mathematical theorems ; Mathematics ; Number Theory ; Polynomials ; Sciences and techniques of general use</subject><ispartof>Proceedings of the American Mathematical Society, 2011-01, Vol.139 (1), p.39-49</ispartof><rights>Copyright 2010, American Mathematical Society</rights><rights>2011 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a501t-13483a6357897511c725f9def1e6382571afe43e7aa79333f8ed38754f6504bb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10591-9S0002-9939-2010-10591-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10591-9$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,780,784,803,832,885,4024,23324,23328,27923,27924,27925,58017,58021,58250,58254,77836,77838,77846,77848</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23790656$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01278726$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>HARE, KEVIN G.</creatorcontrib><creatorcontrib>LAISHRAM, SHANTA</creatorcontrib><creatorcontrib>STOLL, THOMAS</creatorcontrib><title>Stolarsky's conjecture and the sum of digits of polynomial values</title><title>Proceedings of the American Mathematical Society</title><description>Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h &gt; 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε &gt; 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) &lt; ε. Further, we give lower bounds for the number of n &lt; N such that s q (p(n))/s q &lt; ε.</description><subject>Coefficients</subject><subject>Constant coefficients</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Integers</subject><subject>Mathematical congruence</subject><subject>Mathematical functions</subject><subject>Mathematical sequences</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKw0AUhgdRsFYfQcxGxMXoXDK3ZSlqhYKL6no4TWZsapIpmbTQtzdpJGtXc_m__xz4ELqj5IkSQ55XhBCGjeEGM0IJpkQYis0ZmlCiNZaayXM0GaFLdBXjtntSk6oJmq3aUEITf44PMclCvXVZu29cAnWetBuXxH2VBJ_kxXfRxv62C-WxDlUBZXKAcu_iNbrwUEZ383dO0dfry-d8gZcfb-_z2RKDILTFlKeag-RCaaMEpZliwpvceeok10woCt6l3CkAZTjnXrucayVSLwVJ12s-RY_D3A2UdtcUFTRHG6Cwi9nS9n-EMqUVkwfasWpgsybE2Dg_FiixvTV7smZ7Iba3Zk_WrOma90NzBzGD0jdQZ0Uc64wrQ6SQHXc7cNvYhmbM09McI7qcDTlU8d_LfwGXOoM1</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>HARE, KEVIN G.</creator><creator>LAISHRAM, SHANTA</creator><creator>STOLL, THOMAS</creator><general>American Mathematical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110101</creationdate><title>Stolarsky's conjecture and the sum of digits of polynomial values</title><author>HARE, KEVIN G. ; LAISHRAM, SHANTA ; STOLL, THOMAS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a501t-13483a6357897511c725f9def1e6382571afe43e7aa79333f8ed38754f6504bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coefficients</topic><topic>Constant coefficients</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Integers</topic><topic>Mathematical congruence</topic><topic>Mathematical functions</topic><topic>Mathematical sequences</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARE, KEVIN G.</creatorcontrib><creatorcontrib>LAISHRAM, SHANTA</creatorcontrib><creatorcontrib>STOLL, THOMAS</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARE, KEVIN G.</au><au>LAISHRAM, SHANTA</au><au>STOLL, THOMAS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stolarsky's conjecture and the sum of digits of polynomial values</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>139</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>Let s q (n) denote the sum of the digits in the g-ary expansion of an integer n. In 1978, Stolarsky showed that $\mathop {lim inf}\limits_{n \to \infty } {{s_2 (n^2 )} \over {s_2 (n)}} = 0$ . He conjectured that, just as for n², this limit infimum should be 0 for higher powers of n. We prove and generalize this conjecture showing that for any polynomial $p(\chi )\,\, = \,\,a_h \chi ^h \, + \,\,a_{h - 1} \chi ^{h - 1} \, + \,...a_o \in \mathbb{Z}[\chi ]$ with h ≥ 2 and a h &gt; 0 any base q, $\mathop {lim inf}\limits_{n \to \infty } {{s_q (n^2 ))} \over {s_q (n)}} = 0$ For any ε &gt; 0 we give a bound on the minimal n such that the ratio s q (p(n))/s q (n) &lt; ε. Further, we give lower bounds for the number of n &lt; N such that s q (p(n))/s q &lt; ε.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2010-10591-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2011-01, Vol.139 (1), p.39-49
issn 0002-9939
1088-6826
language eng
recordid cdi_hal_primary_oai_HAL_hal_01278726v1
source American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals
subjects Coefficients
Constant coefficients
Exact sciences and technology
General mathematics
General, history and biography
Integers
Mathematical congruence
Mathematical functions
Mathematical sequences
Mathematical theorems
Mathematics
Number Theory
Polynomials
Sciences and techniques of general use
title Stolarsky's conjecture and the sum of digits of polynomial values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stolarsky's%20conjecture%20and%20the%20sum%20of%20digits%20of%20polynomial%20values&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=HARE,%20KEVIN%20G.&rft.date=2011-01-01&rft.volume=139&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-2010-10591-9&rft_dat=%3Cjstor_hal_p%3E41059195%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41059195&rfr_iscdi=true