Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics
We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to genera...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2015-12, Vol.138, p.128-139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | |
container_start_page | 128 |
container_title | Chemical engineering science |
container_volume | 138 |
creator | Zhang, Shuheng Guivier-Curien, Carine Veesler, Stéphane Candoni, Nadine |
description | We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters.
[Display omitted]
•Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca. |
doi_str_mv | 10.1016/j.ces.2015.07.046 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01278233v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250915005321</els_id><sourcerecordid>oai_HAL_hal_01278233v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdiyMiSc4yS2xVRVQJEqwVBmy_UfcJQ6xU4rlU-PoyBGptPdvfd090PoFkOBATf3baFMLErAdQG0gKo5QzPMKMmrCupzNAMAnpc18Et0FWObWkoxzNDHWzDaqcH1PuttFt23iZn0OrPBfB2MVy71aeGl7zs3mJCPEp3p0O87M8TM-UydOud1cEp22SZvD36K2zkVetsdXMqP1-jCyi6am986R-9Pj5vlKl-_Pr8sF-tckYYNua7AWpDW1HxrOWN8C0oqpRu5xY1RvGkoLSUvDSkNZkrWBAiRvGa61rhinMzR3ZT7KTuxD24nw0n00onVYi3GGeCSspKQI05aPGnTnTEGY_8MGMRIVbQiURUjVQFUJKrJ8zB5THri6EwQMSHyKkEMRg1C9-4f9w9iZIGj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Shuheng ; Guivier-Curien, Carine ; Veesler, Stéphane ; Candoni, Nadine</creator><creatorcontrib>Zhang, Shuheng ; Guivier-Curien, Carine ; Veesler, Stéphane ; Candoni, Nadine</creatorcontrib><description>We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters.
[Display omitted]
•Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2015.07.046</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Condensed Matter ; Drop ; Fluid mechanics ; Hydrodynamics ; Mechanics ; Microfluidic ; Microreactor ; Multiphase flow ; Physics</subject><ispartof>Chemical engineering science, 2015-12, Vol.138, p.128-139</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</citedby><cites>FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</cites><orcidid>0000-0002-7916-7924 ; 0000-0001-8362-2531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2015.07.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01278233$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Guivier-Curien, Carine</creatorcontrib><creatorcontrib>Veesler, Stéphane</creatorcontrib><creatorcontrib>Candoni, Nadine</creatorcontrib><title>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</title><title>Chemical engineering science</title><description>We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters.
[Display omitted]
•Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.</description><subject>Condensed Matter</subject><subject>Drop</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Mechanics</subject><subject>Microfluidic</subject><subject>Microreactor</subject><subject>Multiphase flow</subject><subject>Physics</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdiyMiSc4yS2xVRVQJEqwVBmy_UfcJQ6xU4rlU-PoyBGptPdvfd090PoFkOBATf3baFMLErAdQG0gKo5QzPMKMmrCupzNAMAnpc18Et0FWObWkoxzNDHWzDaqcH1PuttFt23iZn0OrPBfB2MVy71aeGl7zs3mJCPEp3p0O87M8TM-UydOud1cEp22SZvD36K2zkVetsdXMqP1-jCyi6am986R-9Pj5vlKl-_Pr8sF-tckYYNua7AWpDW1HxrOWN8C0oqpRu5xY1RvGkoLSUvDSkNZkrWBAiRvGa61rhinMzR3ZT7KTuxD24nw0n00onVYi3GGeCSspKQI05aPGnTnTEGY_8MGMRIVbQiURUjVQFUJKrJ8zB5THri6EwQMSHyKkEMRg1C9-4f9w9iZIGj</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Zhang, Shuheng</creator><creator>Guivier-Curien, Carine</creator><creator>Veesler, Stéphane</creator><creator>Candoni, Nadine</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7916-7924</orcidid><orcidid>https://orcid.org/0000-0001-8362-2531</orcidid></search><sort><creationdate>20151222</creationdate><title>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</title><author>Zhang, Shuheng ; Guivier-Curien, Carine ; Veesler, Stéphane ; Candoni, Nadine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed Matter</topic><topic>Drop</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Mechanics</topic><topic>Microfluidic</topic><topic>Microreactor</topic><topic>Multiphase flow</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Guivier-Curien, Carine</creatorcontrib><creatorcontrib>Veesler, Stéphane</creatorcontrib><creatorcontrib>Candoni, Nadine</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuheng</au><au>Guivier-Curien, Carine</au><au>Veesler, Stéphane</au><au>Candoni, Nadine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</atitle><jtitle>Chemical engineering science</jtitle><date>2015-12-22</date><risdate>2015</risdate><volume>138</volume><spage>128</spage><epage>139</epage><pages>128-139</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters.
[Display omitted]
•Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2015.07.046</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7916-7924</orcidid><orcidid>https://orcid.org/0000-0001-8362-2531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2015-12, Vol.138, p.128-139 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01278233v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Condensed Matter Drop Fluid mechanics Hydrodynamics Mechanics Microfluidic Microreactor Multiphase flow Physics |
title | Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20sizes%20and%20frequencies%20of%20nanoliter-sized%20droplets%20in%20cylindrical%20T-junction%20microfluidics&rft.jtitle=Chemical%20engineering%20science&rft.au=Zhang,%20Shuheng&rft.date=2015-12-22&rft.volume=138&rft.spage=128&rft.epage=139&rft.pages=128-139&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2015.07.046&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01278233v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0009250915005321&rfr_iscdi=true |