Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics

We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2015-12, Vol.138, p.128-139
Hauptverfasser: Zhang, Shuheng, Guivier-Curien, Carine, Veesler, Stéphane, Candoni, Nadine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue
container_start_page 128
container_title Chemical engineering science
container_volume 138
creator Zhang, Shuheng
Guivier-Curien, Carine
Veesler, Stéphane
Candoni, Nadine
description We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters. [Display omitted] •Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.
doi_str_mv 10.1016/j.ces.2015.07.046
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01278233v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250915005321</els_id><sourcerecordid>oai_HAL_hal_01278233v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdiyMiSc4yS2xVRVQJEqwVBmy_UfcJQ6xU4rlU-PoyBGptPdvfd090PoFkOBATf3baFMLErAdQG0gKo5QzPMKMmrCupzNAMAnpc18Et0FWObWkoxzNDHWzDaqcH1PuttFt23iZn0OrPBfB2MVy71aeGl7zs3mJCPEp3p0O87M8TM-UydOud1cEp22SZvD36K2zkVetsdXMqP1-jCyi6am986R-9Pj5vlKl-_Pr8sF-tckYYNua7AWpDW1HxrOWN8C0oqpRu5xY1RvGkoLSUvDSkNZkrWBAiRvGa61rhinMzR3ZT7KTuxD24nw0n00onVYi3GGeCSspKQI05aPGnTnTEGY_8MGMRIVbQiURUjVQFUJKrJ8zB5THri6EwQMSHyKkEMRg1C9-4f9w9iZIGj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Shuheng ; Guivier-Curien, Carine ; Veesler, Stéphane ; Candoni, Nadine</creator><creatorcontrib>Zhang, Shuheng ; Guivier-Curien, Carine ; Veesler, Stéphane ; Candoni, Nadine</creatorcontrib><description>We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters. [Display omitted] •Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2015.07.046</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Condensed Matter ; Drop ; Fluid mechanics ; Hydrodynamics ; Mechanics ; Microfluidic ; Microreactor ; Multiphase flow ; Physics</subject><ispartof>Chemical engineering science, 2015-12, Vol.138, p.128-139</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</citedby><cites>FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</cites><orcidid>0000-0002-7916-7924 ; 0000-0001-8362-2531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2015.07.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01278233$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Guivier-Curien, Carine</creatorcontrib><creatorcontrib>Veesler, Stéphane</creatorcontrib><creatorcontrib>Candoni, Nadine</creatorcontrib><title>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</title><title>Chemical engineering science</title><description>We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters. [Display omitted] •Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.</description><subject>Condensed Matter</subject><subject>Drop</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Mechanics</subject><subject>Microfluidic</subject><subject>Microreactor</subject><subject>Multiphase flow</subject><subject>Physics</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdiyMiSc4yS2xVRVQJEqwVBmy_UfcJQ6xU4rlU-PoyBGptPdvfd090PoFkOBATf3baFMLErAdQG0gKo5QzPMKMmrCupzNAMAnpc18Et0FWObWkoxzNDHWzDaqcH1PuttFt23iZn0OrPBfB2MVy71aeGl7zs3mJCPEp3p0O87M8TM-UydOud1cEp22SZvD36K2zkVetsdXMqP1-jCyi6am986R-9Pj5vlKl-_Pr8sF-tckYYNua7AWpDW1HxrOWN8C0oqpRu5xY1RvGkoLSUvDSkNZkrWBAiRvGa61rhinMzR3ZT7KTuxD24nw0n00onVYi3GGeCSspKQI05aPGnTnTEGY_8MGMRIVbQiURUjVQFUJKrJ8zB5THri6EwQMSHyKkEMRg1C9-4f9w9iZIGj</recordid><startdate>20151222</startdate><enddate>20151222</enddate><creator>Zhang, Shuheng</creator><creator>Guivier-Curien, Carine</creator><creator>Veesler, Stéphane</creator><creator>Candoni, Nadine</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7916-7924</orcidid><orcidid>https://orcid.org/0000-0001-8362-2531</orcidid></search><sort><creationdate>20151222</creationdate><title>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</title><author>Zhang, Shuheng ; Guivier-Curien, Carine ; Veesler, Stéphane ; Candoni, Nadine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d40ff0afe59bf9889b0caccd6ab16ec966772a92e32e18ca53033a958d5d14893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed Matter</topic><topic>Drop</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Mechanics</topic><topic>Microfluidic</topic><topic>Microreactor</topic><topic>Multiphase flow</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuheng</creatorcontrib><creatorcontrib>Guivier-Curien, Carine</creatorcontrib><creatorcontrib>Veesler, Stéphane</creatorcontrib><creatorcontrib>Candoni, Nadine</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuheng</au><au>Guivier-Curien, Carine</au><au>Veesler, Stéphane</au><au>Candoni, Nadine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics</atitle><jtitle>Chemical engineering science</jtitle><date>2015-12-22</date><risdate>2015</risdate><volume>138</volume><spage>128</spage><epage>139</epage><pages>128-139</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>We study the formation of nanoliter-sized droplets in a microfluidic system composed of a T-junction in PEEK and tubing in Teflon. This system, practical for a ‘plug and play’ set-up, is designed for droplet-based experiments of crystallization with a statistical approach. Hence the aim is to generate hundreds of droplets identical in size and composition and spatially homogeneous. Therefore, parameters of control are droplet size and frequency. However, the geometry of the T-junction is not perfect and, moreover, its channels are circular, as opposed to the planar geometries with rectangular cross-sections that are usually used. However, based on 3D experiments and 2D simulations, we observe the same regimes of droplet generation in circular channels as in planar geometries, and with the same stability. Therefore, we refer to velocities instead of flow rates to characterize the system. Then we define operating range in terms of droplet size and frequency through empirical relations using total velocity, velocity ratio and capillary number, to ensure homogeneous droplets in channels of 500µm and 1mm diameters. [Display omitted] •Hydrodynamic of nanodroplets in a microfluidic system using a T-junction.•Comparison of 3D cylindrical channels with 2D simulations using average velocity.•Relation between size and frequency of droplets and total velocity, velocity ratio and Ca.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2015.07.046</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7916-7924</orcidid><orcidid>https://orcid.org/0000-0001-8362-2531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2015-12, Vol.138, p.128-139
issn 0009-2509
1873-4405
language eng
recordid cdi_hal_primary_oai_HAL_hal_01278233v1
source Access via ScienceDirect (Elsevier)
subjects Condensed Matter
Drop
Fluid mechanics
Hydrodynamics
Mechanics
Microfluidic
Microreactor
Multiphase flow
Physics
title Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20sizes%20and%20frequencies%20of%20nanoliter-sized%20droplets%20in%20cylindrical%20T-junction%20microfluidics&rft.jtitle=Chemical%20engineering%20science&rft.au=Zhang,%20Shuheng&rft.date=2015-12-22&rft.volume=138&rft.spage=128&rft.epage=139&rft.pages=128-139&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2015.07.046&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01278233v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0009250915005321&rfr_iscdi=true