Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations

In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2018-03, Vol.168 (1-2), p.717-757
Hauptverfasser: Aronna, M. Soledad, Bonnans, J. Frédéric, Kröner, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 757
container_issue 1-2
container_start_page 717
container_title Mathematical programming
container_volume 168
creator Aronna, M. Soledad
Bonnans, J. Frédéric
Kröner, Axel
description In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.
doi_str_mv 10.1007/s10107-016-1093-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01273496v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007795867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsceIQ2I0dO-GGKv6kSr3A2XITh7pK42C7RX17XILgxGmlnW9GmiHkEuEGAeRtQECQGaDIECqW8SMyQc5ExgUXx2QCkBdZIRBOyVkIawBAVpYT0iyGaDe6o7Xro3cddS21fWt7Gw1t7Mb0wbo-6Uvb2d5oT8M-RLMJd1QPQ2drHZNOo6NxZejK6Eh139BPvTPUfGy_1XBOTlrdBXPxc6fk7fHhdfaczRdPL7P7eVazisVsaUTFGTd8WYoKdcmR84oti5rxFqXQBa-aQpgGTQtS57JtC9ZoiZgjQt3UbEqux9yV7tTgUy-_V05b9Xw_V4cfYC4Zr8QuT-zVyA7efWxNiGrttj41DSpPg8qqKIVMFI5U7V0I3rS_sQjqMLwah0_JQh2GVzx58tETEtu_G_-X_L_pCwQKhW8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007795867</pqid></control><display><type>article</type><title>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Aronna, M. Soledad ; Bonnans, J. Frédéric ; Kröner, Axel</creator><creatorcontrib>Aronna, M. Soledad ; Bonnans, J. Frédéric ; Kröner, Axel</creatorcontrib><description>In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-016-1093-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Nonlinear programming ; Numerical Analysis ; Operators (mathematics) ; Optimal control ; Optimization ; Optimization and Control ; Theoretical ; Wave equations</subject><ispartof>Mathematical programming, 2018-03, Vol.168 (1-2), p.717-757</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016</rights><rights>Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</citedby><cites>FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</cites><orcidid>0000-0003-0988-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-016-1093-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-016-1093-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01273496$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aronna, M. Soledad</creatorcontrib><creatorcontrib>Bonnans, J. Frédéric</creatorcontrib><creatorcontrib>Kröner, Axel</creatorcontrib><title>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Nonlinear programming</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Theoretical</subject><subject>Wave equations</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwsceIQ2I0dO-GGKv6kSr3A2XITh7pK42C7RX17XILgxGmlnW9GmiHkEuEGAeRtQECQGaDIECqW8SMyQc5ExgUXx2QCkBdZIRBOyVkIawBAVpYT0iyGaDe6o7Xro3cddS21fWt7Gw1t7Mb0wbo-6Uvb2d5oT8M-RLMJd1QPQ2drHZNOo6NxZejK6Eh139BPvTPUfGy_1XBOTlrdBXPxc6fk7fHhdfaczRdPL7P7eVazisVsaUTFGTd8WYoKdcmR84oti5rxFqXQBa-aQpgGTQtS57JtC9ZoiZgjQt3UbEqux9yV7tTgUy-_V05b9Xw_V4cfYC4Zr8QuT-zVyA7efWxNiGrttj41DSpPg8qqKIVMFI5U7V0I3rS_sQjqMLwah0_JQh2GVzx58tETEtu_G_-X_L_pCwQKhW8</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Aronna, M. Soledad</creator><creator>Bonnans, J. Frédéric</creator><creator>Kröner, Axel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0988-9865</orcidid></search><sort><creationdate>20180301</creationdate><title>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</title><author>Aronna, M. Soledad ; Bonnans, J. Frédéric ; Kröner, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Nonlinear programming</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Theoretical</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aronna, M. Soledad</creatorcontrib><creatorcontrib>Bonnans, J. Frédéric</creatorcontrib><creatorcontrib>Kröner, Axel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aronna, M. Soledad</au><au>Bonnans, J. Frédéric</au><au>Kröner, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>168</volume><issue>1-2</issue><spage>717</spage><epage>757</epage><pages>717-757</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-016-1093-4</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-0988-9865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 2018-03, Vol.168 (1-2), p.717-757
issn 0025-5610
1436-4646
language eng
recordid cdi_hal_primary_oai_HAL_hal_01273496v2
source SpringerLink Journals; EBSCOhost Business Source Complete
subjects Calculus of Variations and Optimal Control
Optimization
Combinatorics
Full Length Paper
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Nonlinear programming
Numerical Analysis
Operators (mathematics)
Optimal control
Optimization
Optimization and Control
Theoretical
Wave equations
title Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20infinite%20dimensional%20bilinear%20systems:%20application%20to%20the%20heat%20and%20wave%20equations&rft.jtitle=Mathematical%20programming&rft.au=Aronna,%20M.%20Soledad&rft.date=2018-03-01&rft.volume=168&rft.issue=1-2&rft.spage=717&rft.epage=757&rft.pages=717-757&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-016-1093-4&rft_dat=%3Cproquest_hal_p%3E2007795867%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007795867&rft_id=info:pmid/&rfr_iscdi=true