Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations
In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform....
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2018-03, Vol.168 (1-2), p.717-757 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 757 |
---|---|
container_issue | 1-2 |
container_start_page | 717 |
container_title | Mathematical programming |
container_volume | 168 |
creator | Aronna, M. Soledad Bonnans, J. Frédéric Kröner, Axel |
description | In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations. |
doi_str_mv | 10.1007/s10107-016-1093-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01273496v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007795867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsceIQ2I0dO-GGKv6kSr3A2XITh7pK42C7RX17XILgxGmlnW9GmiHkEuEGAeRtQECQGaDIECqW8SMyQc5ExgUXx2QCkBdZIRBOyVkIawBAVpYT0iyGaDe6o7Xro3cddS21fWt7Gw1t7Mb0wbo-6Uvb2d5oT8M-RLMJd1QPQ2drHZNOo6NxZejK6Eh139BPvTPUfGy_1XBOTlrdBXPxc6fk7fHhdfaczRdPL7P7eVazisVsaUTFGTd8WYoKdcmR84oti5rxFqXQBa-aQpgGTQtS57JtC9ZoiZgjQt3UbEqux9yV7tTgUy-_V05b9Xw_V4cfYC4Zr8QuT-zVyA7efWxNiGrttj41DSpPg8qqKIVMFI5U7V0I3rS_sQjqMLwah0_JQh2GVzx58tETEtu_G_-X_L_pCwQKhW8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007795867</pqid></control><display><type>article</type><title>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Aronna, M. Soledad ; Bonnans, J. Frédéric ; Kröner, Axel</creator><creatorcontrib>Aronna, M. Soledad ; Bonnans, J. Frédéric ; Kröner, Axel</creatorcontrib><description>In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-016-1093-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calculus of Variations and Optimal Control; Optimization ; Combinatorics ; Full Length Paper ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Nonlinear programming ; Numerical Analysis ; Operators (mathematics) ; Optimal control ; Optimization ; Optimization and Control ; Theoretical ; Wave equations</subject><ispartof>Mathematical programming, 2018-03, Vol.168 (1-2), p.717-757</ispartof><rights>Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2016</rights><rights>Mathematical Programming is a copyright of Springer, (2016). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</citedby><cites>FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</cites><orcidid>0000-0003-0988-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-016-1093-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-016-1093-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01273496$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aronna, M. Soledad</creatorcontrib><creatorcontrib>Bonnans, J. Frédéric</creatorcontrib><creatorcontrib>Kröner, Axel</creatorcontrib><title>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.</description><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Combinatorics</subject><subject>Full Length Paper</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Nonlinear programming</subject><subject>Numerical Analysis</subject><subject>Operators (mathematics)</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Theoretical</subject><subject>Wave equations</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwsceIQ2I0dO-GGKv6kSr3A2XITh7pK42C7RX17XILgxGmlnW9GmiHkEuEGAeRtQECQGaDIECqW8SMyQc5ExgUXx2QCkBdZIRBOyVkIawBAVpYT0iyGaDe6o7Xro3cddS21fWt7Gw1t7Mb0wbo-6Uvb2d5oT8M-RLMJd1QPQ2drHZNOo6NxZejK6Eh139BPvTPUfGy_1XBOTlrdBXPxc6fk7fHhdfaczRdPL7P7eVazisVsaUTFGTd8WYoKdcmR84oti5rxFqXQBa-aQpgGTQtS57JtC9ZoiZgjQt3UbEqux9yV7tTgUy-_V05b9Xw_V4cfYC4Zr8QuT-zVyA7efWxNiGrttj41DSpPg8qqKIVMFI5U7V0I3rS_sQjqMLwah0_JQh2GVzx58tETEtu_G_-X_L_pCwQKhW8</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Aronna, M. Soledad</creator><creator>Bonnans, J. Frédéric</creator><creator>Kröner, Axel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0988-9865</orcidid></search><sort><creationdate>20180301</creationdate><title>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</title><author>Aronna, M. Soledad ; Bonnans, J. Frédéric ; Kröner, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-be69434e4b8691a8414493b5c34f176a549d56ed1ef07a27ff53da7112110cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Combinatorics</topic><topic>Full Length Paper</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Nonlinear programming</topic><topic>Numerical Analysis</topic><topic>Operators (mathematics)</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Theoretical</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aronna, M. Soledad</creatorcontrib><creatorcontrib>Bonnans, J. Frédéric</creatorcontrib><creatorcontrib>Kröner, Axel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aronna, M. Soledad</au><au>Bonnans, J. Frédéric</au><au>Kröner, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>168</volume><issue>1-2</issue><spage>717</spage><epage>757</epage><pages>717-757</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><abstract>In this paper we consider second order optimality conditions for a bilinear optimal control problem governed by a strongly continuous semigroup operator, the control entering linearly in the cost function. We derive first and second order optimality conditions, taking advantage of the Goh transform. We then apply the results to the heat and wave equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10107-016-1093-4</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-0988-9865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2018-03, Vol.168 (1-2), p.717-757 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01273496v2 |
source | SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Calculus of Variations and Optimal Control Optimization Combinatorics Full Length Paper Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Nonlinear programming Numerical Analysis Operators (mathematics) Optimal control Optimization Optimization and Control Theoretical Wave equations |
title | Optimal control of infinite dimensional bilinear systems: application to the heat and wave equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20of%20infinite%20dimensional%20bilinear%20systems:%20application%20to%20the%20heat%20and%20wave%20equations&rft.jtitle=Mathematical%20programming&rft.au=Aronna,%20M.%20Soledad&rft.date=2018-03-01&rft.volume=168&rft.issue=1-2&rft.spage=717&rft.epage=757&rft.pages=717-757&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007/s10107-016-1093-4&rft_dat=%3Cproquest_hal_p%3E2007795867%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007795867&rft_id=info:pmid/&rfr_iscdi=true |