Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers

•Optical chloroform detection.•Pr3+ doped chalcogenide fibers.•Tapered optical fibers.•Pr: GaGeSbS spectroscopy.•Mid-IR incoherent emission sources. Chalcogenide glasses, owing to their transparency in the infrared window and the appropriate solubility of rare earth, allows the generation of middle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2016-06, Vol.229, p.209-216
Hauptverfasser: Chahal, Radwan, Starecki, Florent, Boussard-Plédel, Catherine, Doualan, Jean-Louis, Michel, Karine, Brilland, Laurent, Braud, Alain, Camy, Patrice, Bureau, Bruno, Nazabal, Virginie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 209
container_title Sensors and actuators. B, Chemical
container_volume 229
creator Chahal, Radwan
Starecki, Florent
Boussard-Plédel, Catherine
Doualan, Jean-Louis
Michel, Karine
Brilland, Laurent
Braud, Alain
Camy, Patrice
Bureau, Bruno
Nazabal, Virginie
description •Optical chloroform detection.•Pr3+ doped chalcogenide fibers.•Tapered optical fibers.•Pr: GaGeSbS spectroscopy.•Mid-IR incoherent emission sources. Chalcogenide glasses, owing to their transparency in the infrared window and the appropriate solubility of rare earth, allows the generation of middle infrared (mid-IR) radiation from a near infrared or visible pumping source. These emitted mid-IR broad bands can probe the vibrational modes of several molecules, e.g. CH, CO or CCl. Relying on this principle, a mid-IR optical sensor using the mid-IR fluorescence of Pr3+: Ga-Ge-Sb-S fibers has been developed. The detection principle is based on Fiber Evanescent Wave Spectroscopy (FEWS). The spectroscopic characterization of praseodymium ions (Pr3+) was performed in the near and mid-IR and is discussed on the basis of comparison with Judd–Ofelt calculations. The broad emission spectrum of the Pr3+: Ga-Ge-Sb-S fiber from 4 to 5μm could enable the monitoring of multiple pollutants. In this study, chloroform detection is carried out via a novel technique derived from FEWS. In this way, an infrared sensor was developed, composed of a pumping source in near-IR, a mid-IR detector and a tapered Pr3+: chalcogenide fiber to enhance the detection sensitivity. These results demonstrate for the first time the feasibility of detecting molecules by FEWS using the mid-IR fluorescence emitted by rare earth ions doping chalcogenide fibers. This method is an effective alternative to the classical FEWS system, as RE doped chalcogenide fibers have the advantage of being a compact mid-IR source.
doi_str_mv 10.1016/j.snb.2016.01.091
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01269748v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400516300910</els_id><sourcerecordid>1790952293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3c8d0d155c4b6f5c447d18c81a8e1cf49d4cf661e1a066e7d2e4e9c357fb5c7c3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVoIdu0H6A3H5ODnRlbtixyCqH5A0sCoT0LeTRutTjWRtrdkG8fLRtyLLlIQvze8OY9IX4iVAjYna-qNA9VnZ8VYAUaj8QCe9WUDSj1RSxA120pAdpj8S2lFQDIpoOFuL_2A8eCd3bmRDxvihe74yKtmTYxJArr12KwiV0R5uLusRinbYjvJP2zE4W_PHvHxbifk76Lr6OdEv94v0_En-tfv69uy-XDzd3V5bIkKWFTNtQ7cNi2JIduzKdUDnvq0faMNErtJI1dh4wWuo6Vq1mypqZV49CSouZEnB3mZgtmHf2Tja8mWG9uL5dm_wdYd1rJfoeZPT2w6xiet5w25snnBaYprxy2yWAPPegMfwJVGnRb17rJKB5QyjGlyOOHDQSzr8SsTK7E7CvJbkyuJGsuDhrO0ew8R5PI80zsfMx5Gxf8f9RvyTeTdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790952293</pqid></control><display><type>article</type><title>Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chahal, Radwan ; Starecki, Florent ; Boussard-Plédel, Catherine ; Doualan, Jean-Louis ; Michel, Karine ; Brilland, Laurent ; Braud, Alain ; Camy, Patrice ; Bureau, Bruno ; Nazabal, Virginie</creator><creatorcontrib>Chahal, Radwan ; Starecki, Florent ; Boussard-Plédel, Catherine ; Doualan, Jean-Louis ; Michel, Karine ; Brilland, Laurent ; Braud, Alain ; Camy, Patrice ; Bureau, Bruno ; Nazabal, Virginie</creatorcontrib><description>•Optical chloroform detection.•Pr3+ doped chalcogenide fibers.•Tapered optical fibers.•Pr: GaGeSbS spectroscopy.•Mid-IR incoherent emission sources. Chalcogenide glasses, owing to their transparency in the infrared window and the appropriate solubility of rare earth, allows the generation of middle infrared (mid-IR) radiation from a near infrared or visible pumping source. These emitted mid-IR broad bands can probe the vibrational modes of several molecules, e.g. CH, CO or CCl. Relying on this principle, a mid-IR optical sensor using the mid-IR fluorescence of Pr3+: Ga-Ge-Sb-S fibers has been developed. The detection principle is based on Fiber Evanescent Wave Spectroscopy (FEWS). The spectroscopic characterization of praseodymium ions (Pr3+) was performed in the near and mid-IR and is discussed on the basis of comparison with Judd–Ofelt calculations. The broad emission spectrum of the Pr3+: Ga-Ge-Sb-S fiber from 4 to 5μm could enable the monitoring of multiple pollutants. In this study, chloroform detection is carried out via a novel technique derived from FEWS. In this way, an infrared sensor was developed, composed of a pumping source in near-IR, a mid-IR detector and a tapered Pr3+: chalcogenide fiber to enhance the detection sensitivity. These results demonstrate for the first time the feasibility of detecting molecules by FEWS using the mid-IR fluorescence emitted by rare earth ions doping chalcogenide fibers. This method is an effective alternative to the classical FEWS system, as RE doped chalcogenide fibers have the advantage of being a compact mid-IR source.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2016.01.091</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chalcogenide glasses ; Chalcogenides ; Chemical Sciences ; Chloroform ; Emittance ; Evanescent waves ; FEWS ; Fibers ; Fluorescence ; Material chemistry ; Mid-IR optical sensor ; Praseodymium ; Rare earth metals ; Sensors ; Spectroscopy</subject><ispartof>Sensors and actuators. B, Chemical, 2016-06, Vol.229, p.209-216</ispartof><rights>2016 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3c8d0d155c4b6f5c447d18c81a8e1cf49d4cf661e1a066e7d2e4e9c357fb5c7c3</citedby><cites>FETCH-LOGICAL-c440t-3c8d0d155c4b6f5c447d18c81a8e1cf49d4cf661e1a066e7d2e4e9c357fb5c7c3</cites><orcidid>0000-0002-0113-3935 ; 0000-0002-8599-3659 ; 0000-0001-6303-648X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2016.01.091$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://univ-rennes.hal.science/hal-01269748$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chahal, Radwan</creatorcontrib><creatorcontrib>Starecki, Florent</creatorcontrib><creatorcontrib>Boussard-Plédel, Catherine</creatorcontrib><creatorcontrib>Doualan, Jean-Louis</creatorcontrib><creatorcontrib>Michel, Karine</creatorcontrib><creatorcontrib>Brilland, Laurent</creatorcontrib><creatorcontrib>Braud, Alain</creatorcontrib><creatorcontrib>Camy, Patrice</creatorcontrib><creatorcontrib>Bureau, Bruno</creatorcontrib><creatorcontrib>Nazabal, Virginie</creatorcontrib><title>Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers</title><title>Sensors and actuators. B, Chemical</title><description>•Optical chloroform detection.•Pr3+ doped chalcogenide fibers.•Tapered optical fibers.•Pr: GaGeSbS spectroscopy.•Mid-IR incoherent emission sources. Chalcogenide glasses, owing to their transparency in the infrared window and the appropriate solubility of rare earth, allows the generation of middle infrared (mid-IR) radiation from a near infrared or visible pumping source. These emitted mid-IR broad bands can probe the vibrational modes of several molecules, e.g. CH, CO or CCl. Relying on this principle, a mid-IR optical sensor using the mid-IR fluorescence of Pr3+: Ga-Ge-Sb-S fibers has been developed. The detection principle is based on Fiber Evanescent Wave Spectroscopy (FEWS). The spectroscopic characterization of praseodymium ions (Pr3+) was performed in the near and mid-IR and is discussed on the basis of comparison with Judd–Ofelt calculations. The broad emission spectrum of the Pr3+: Ga-Ge-Sb-S fiber from 4 to 5μm could enable the monitoring of multiple pollutants. In this study, chloroform detection is carried out via a novel technique derived from FEWS. In this way, an infrared sensor was developed, composed of a pumping source in near-IR, a mid-IR detector and a tapered Pr3+: chalcogenide fiber to enhance the detection sensitivity. These results demonstrate for the first time the feasibility of detecting molecules by FEWS using the mid-IR fluorescence emitted by rare earth ions doping chalcogenide fibers. This method is an effective alternative to the classical FEWS system, as RE doped chalcogenide fibers have the advantage of being a compact mid-IR source.</description><subject>Chalcogenide glasses</subject><subject>Chalcogenides</subject><subject>Chemical Sciences</subject><subject>Chloroform</subject><subject>Emittance</subject><subject>Evanescent waves</subject><subject>FEWS</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>Material chemistry</subject><subject>Mid-IR optical sensor</subject><subject>Praseodymium</subject><subject>Rare earth metals</subject><subject>Sensors</subject><subject>Spectroscopy</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAQxUVoIdu0H6A3H5ODnRlbtixyCqH5A0sCoT0LeTRutTjWRtrdkG8fLRtyLLlIQvze8OY9IX4iVAjYna-qNA9VnZ8VYAUaj8QCe9WUDSj1RSxA120pAdpj8S2lFQDIpoOFuL_2A8eCd3bmRDxvihe74yKtmTYxJArr12KwiV0R5uLusRinbYjvJP2zE4W_PHvHxbifk76Lr6OdEv94v0_En-tfv69uy-XDzd3V5bIkKWFTNtQ7cNi2JIduzKdUDnvq0faMNErtJI1dh4wWuo6Vq1mypqZV49CSouZEnB3mZgtmHf2Tja8mWG9uL5dm_wdYd1rJfoeZPT2w6xiet5w25snnBaYprxy2yWAPPegMfwJVGnRb17rJKB5QyjGlyOOHDQSzr8SsTK7E7CvJbkyuJGsuDhrO0ew8R5PI80zsfMx5Gxf8f9RvyTeTdA</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>Chahal, Radwan</creator><creator>Starecki, Florent</creator><creator>Boussard-Plédel, Catherine</creator><creator>Doualan, Jean-Louis</creator><creator>Michel, Karine</creator><creator>Brilland, Laurent</creator><creator>Braud, Alain</creator><creator>Camy, Patrice</creator><creator>Bureau, Bruno</creator><creator>Nazabal, Virginie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0113-3935</orcidid><orcidid>https://orcid.org/0000-0002-8599-3659</orcidid><orcidid>https://orcid.org/0000-0001-6303-648X</orcidid></search><sort><creationdate>20160628</creationdate><title>Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers</title><author>Chahal, Radwan ; Starecki, Florent ; Boussard-Plédel, Catherine ; Doualan, Jean-Louis ; Michel, Karine ; Brilland, Laurent ; Braud, Alain ; Camy, Patrice ; Bureau, Bruno ; Nazabal, Virginie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3c8d0d155c4b6f5c447d18c81a8e1cf49d4cf661e1a066e7d2e4e9c357fb5c7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chalcogenide glasses</topic><topic>Chalcogenides</topic><topic>Chemical Sciences</topic><topic>Chloroform</topic><topic>Emittance</topic><topic>Evanescent waves</topic><topic>FEWS</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>Material chemistry</topic><topic>Mid-IR optical sensor</topic><topic>Praseodymium</topic><topic>Rare earth metals</topic><topic>Sensors</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chahal, Radwan</creatorcontrib><creatorcontrib>Starecki, Florent</creatorcontrib><creatorcontrib>Boussard-Plédel, Catherine</creatorcontrib><creatorcontrib>Doualan, Jean-Louis</creatorcontrib><creatorcontrib>Michel, Karine</creatorcontrib><creatorcontrib>Brilland, Laurent</creatorcontrib><creatorcontrib>Braud, Alain</creatorcontrib><creatorcontrib>Camy, Patrice</creatorcontrib><creatorcontrib>Bureau, Bruno</creatorcontrib><creatorcontrib>Nazabal, Virginie</creatorcontrib><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chahal, Radwan</au><au>Starecki, Florent</au><au>Boussard-Plédel, Catherine</au><au>Doualan, Jean-Louis</au><au>Michel, Karine</au><au>Brilland, Laurent</au><au>Braud, Alain</au><au>Camy, Patrice</au><au>Bureau, Bruno</au><au>Nazabal, Virginie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2016-06-28</date><risdate>2016</risdate><volume>229</volume><spage>209</spage><epage>216</epage><pages>209-216</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Optical chloroform detection.•Pr3+ doped chalcogenide fibers.•Tapered optical fibers.•Pr: GaGeSbS spectroscopy.•Mid-IR incoherent emission sources. Chalcogenide glasses, owing to their transparency in the infrared window and the appropriate solubility of rare earth, allows the generation of middle infrared (mid-IR) radiation from a near infrared or visible pumping source. These emitted mid-IR broad bands can probe the vibrational modes of several molecules, e.g. CH, CO or CCl. Relying on this principle, a mid-IR optical sensor using the mid-IR fluorescence of Pr3+: Ga-Ge-Sb-S fibers has been developed. The detection principle is based on Fiber Evanescent Wave Spectroscopy (FEWS). The spectroscopic characterization of praseodymium ions (Pr3+) was performed in the near and mid-IR and is discussed on the basis of comparison with Judd–Ofelt calculations. The broad emission spectrum of the Pr3+: Ga-Ge-Sb-S fiber from 4 to 5μm could enable the monitoring of multiple pollutants. In this study, chloroform detection is carried out via a novel technique derived from FEWS. In this way, an infrared sensor was developed, composed of a pumping source in near-IR, a mid-IR detector and a tapered Pr3+: chalcogenide fiber to enhance the detection sensitivity. These results demonstrate for the first time the feasibility of detecting molecules by FEWS using the mid-IR fluorescence emitted by rare earth ions doping chalcogenide fibers. This method is an effective alternative to the classical FEWS system, as RE doped chalcogenide fibers have the advantage of being a compact mid-IR source.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2016.01.091</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0113-3935</orcidid><orcidid>https://orcid.org/0000-0002-8599-3659</orcidid><orcidid>https://orcid.org/0000-0001-6303-648X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2016-06, Vol.229, p.209-216
issn 0925-4005
1873-3077
language eng
recordid cdi_hal_primary_oai_HAL_hal_01269748v1
source Elsevier ScienceDirect Journals Complete
subjects Chalcogenide glasses
Chalcogenides
Chemical Sciences
Chloroform
Emittance
Evanescent waves
FEWS
Fibers
Fluorescence
Material chemistry
Mid-IR optical sensor
Praseodymium
Rare earth metals
Sensors
Spectroscopy
title Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20evanescent%20wave%20spectroscopy%20based%20on%20IR%20fluorescent%20chalcogenide%20fibers&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Chahal,%20Radwan&rft.date=2016-06-28&rft.volume=229&rft.spage=209&rft.epage=216&rft.pages=209-216&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2016.01.091&rft_dat=%3Cproquest_hal_p%3E1790952293%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790952293&rft_id=info:pmid/&rft_els_id=S0925400516300910&rfr_iscdi=true