Horizontal holonomy and foliated manifolds

We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle $D$ of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Fourier 2019-01, Vol.69 (3), p.1047-1086
Hauptverfasser: Chitour, Yacine, Grong, Erlend, Jean, Frédéric, Kokkonen, Petri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 3
container_start_page 1047
container_title Annales de l'Institut Fourier
container_volume 69
creator Chitour, Yacine
Grong, Erlend
Jean, Frédéric
Kokkonen, Petri
description We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle $D$ of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal holonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure.The subbundle $D$ plays the role of an orthogonal complement to the leaves of the foliation in case (a) and of a principal connection in case (b).
doi_str_mv 10.5802/aif.3265
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01268119v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01268119v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-a8dca2c7bf0a303ea62cf73c5f066a327e910ce6038aa2215ba2a64c9da51b363</originalsourceid><addsrcrecordid>eNpNkMFKxDAQhoMouKwLPkKPKnSdSTZJe1wWtULBi57DNE3YQNtIU4T16W1ZEU___MM3c_gYu0XYygL4IwW_FVzJC7ZCrXUuBcLlv_mabVIKDQBKUSq1W7GHKo7hOw4TddkxdnGI_Smjoc187AJNrs16GsJc2nTDrjx1yW1-c80-np_eD1Vev728HvZ1brnCKaeitcStbjyQAOFIceu1sNKDUiS4diWCdQpEQcQ5yoY4qZ0tW5LYCCXW7P7890id-RxDT-PJRAqm2tdm2QFyVSCWXzizd2fWjjGl0fm_AwSzKDGzErMoET8Oa1K7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Horizontal holonomy and foliated manifolds</title><source>Alma/SFX Local Collection</source><creator>Chitour, Yacine ; Grong, Erlend ; Jean, Frédéric ; Kokkonen, Petri</creator><creatorcontrib>Chitour, Yacine ; Grong, Erlend ; Jean, Frédéric ; Kokkonen, Petri</creatorcontrib><description>We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle $D$ of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal holonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure.The subbundle $D$ plays the role of an orthogonal complement to the leaves of the foliation in case (a) and of a principal connection in case (b).</description><identifier>ISSN: 1777-5310</identifier><identifier>ISSN: 0373-0956</identifier><identifier>EISSN: 1777-5310</identifier><identifier>DOI: 10.5802/aif.3265</identifier><language>eng</language><publisher>Association des Annales de l'Institut Fourier</publisher><subject>Differential Geometry ; Mathematics</subject><ispartof>Annales de l'Institut Fourier, 2019-01, Vol.69 (3), p.1047-1086</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-a8dca2c7bf0a303ea62cf73c5f066a327e910ce6038aa2215ba2a64c9da51b363</citedby><cites>FETCH-LOGICAL-c261t-a8dca2c7bf0a303ea62cf73c5f066a327e910ce6038aa2215ba2a64c9da51b363</cites><orcidid>0000-0003-4790-6777 ; 0000-0001-8170-076X ; 0000-0002-3214-5824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://ensta-paris.hal.science/hal-01268119$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chitour, Yacine</creatorcontrib><creatorcontrib>Grong, Erlend</creatorcontrib><creatorcontrib>Jean, Frédéric</creatorcontrib><creatorcontrib>Kokkonen, Petri</creatorcontrib><title>Horizontal holonomy and foliated manifolds</title><title>Annales de l'Institut Fourier</title><description>We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle $D$ of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal holonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure.The subbundle $D$ plays the role of an orthogonal complement to the leaves of the foliation in case (a) and of a principal connection in case (b).</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>1777-5310</issn><issn>0373-0956</issn><issn>1777-5310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkMFKxDAQhoMouKwLPkKPKnSdSTZJe1wWtULBi57DNE3YQNtIU4T16W1ZEU___MM3c_gYu0XYygL4IwW_FVzJC7ZCrXUuBcLlv_mabVIKDQBKUSq1W7GHKo7hOw4TddkxdnGI_Smjoc187AJNrs16GsJc2nTDrjx1yW1-c80-np_eD1Vev728HvZ1brnCKaeitcStbjyQAOFIceu1sNKDUiS4diWCdQpEQcQ5yoY4qZ0tW5LYCCXW7P7890id-RxDT-PJRAqm2tdm2QFyVSCWXzizd2fWjjGl0fm_AwSzKDGzErMoET8Oa1K7</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Chitour, Yacine</creator><creator>Grong, Erlend</creator><creator>Jean, Frédéric</creator><creator>Kokkonen, Petri</creator><general>Association des Annales de l'Institut Fourier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4790-6777</orcidid><orcidid>https://orcid.org/0000-0001-8170-076X</orcidid><orcidid>https://orcid.org/0000-0002-3214-5824</orcidid></search><sort><creationdate>20190101</creationdate><title>Horizontal holonomy and foliated manifolds</title><author>Chitour, Yacine ; Grong, Erlend ; Jean, Frédéric ; Kokkonen, Petri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-a8dca2c7bf0a303ea62cf73c5f066a327e910ce6038aa2215ba2a64c9da51b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chitour, Yacine</creatorcontrib><creatorcontrib>Grong, Erlend</creatorcontrib><creatorcontrib>Jean, Frédéric</creatorcontrib><creatorcontrib>Kokkonen, Petri</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annales de l'Institut Fourier</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chitour, Yacine</au><au>Grong, Erlend</au><au>Jean, Frédéric</au><au>Kokkonen, Petri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Horizontal holonomy and foliated manifolds</atitle><jtitle>Annales de l'Institut Fourier</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>69</volume><issue>3</issue><spage>1047</spage><epage>1086</epage><pages>1047-1086</pages><issn>1777-5310</issn><issn>0373-0956</issn><eissn>1777-5310</eissn><abstract>We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle $D$ of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal holonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure.The subbundle $D$ plays the role of an orthogonal complement to the leaves of the foliation in case (a) and of a principal connection in case (b).</abstract><pub>Association des Annales de l'Institut Fourier</pub><doi>10.5802/aif.3265</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-4790-6777</orcidid><orcidid>https://orcid.org/0000-0001-8170-076X</orcidid><orcidid>https://orcid.org/0000-0002-3214-5824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1777-5310
ispartof Annales de l'Institut Fourier, 2019-01, Vol.69 (3), p.1047-1086
issn 1777-5310
0373-0956
1777-5310
language eng
recordid cdi_hal_primary_oai_HAL_hal_01268119v1
source Alma/SFX Local Collection
subjects Differential Geometry
Mathematics
title Horizontal holonomy and foliated manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Horizontal%20holonomy%20and%20foliated%20manifolds&rft.jtitle=Annales%20de%20l'Institut%20Fourier&rft.au=Chitour,%20Yacine&rft.date=2019-01-01&rft.volume=69&rft.issue=3&rft.spage=1047&rft.epage=1086&rft.pages=1047-1086&rft.issn=1777-5310&rft.eissn=1777-5310&rft_id=info:doi/10.5802/aif.3265&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01268119v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true