Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction
The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars–Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and s...
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2012-07, Vol.860 (3), p.464-515 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 3 |
container_start_page | 464 |
container_title | Nuclear physics. B |
container_volume | 860 |
creator | Fehér, L Klimcik, C |
description | The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars–Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n−1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus. |
doi_str_mv | 10.1016/j.nuclphysb.2012.03.005 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01267532v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0550321312001435</els_id><sourcerecordid>S0550321312001435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-adb122b1245ac87d16d5be4afcf98a8b5d8c79af45ec6596ebae02d046fb7b8f3</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhRdRsFafwdx6kbibzebnshS1QkGwer1OdmfJhvzU3aTQO9_BN_RJTKn01oFhYDjnwPkIuWU0YpSl93XUjarZVntfRjFlcUR5RKk4IzOWZzxkIo3PyYwKQUMeM35Jrryv6TQpz2fkY4ONCfUIjR32QW-CocJA9e0W1GCNRR28jrb22AE4__P1vVFVh1ajC_zeD9gGxvVt8DmCt-EKWtsMfWehCxzqcUrou2tyYaDxePN35-T98eFtuQrXL0_Py8U6VLzIhxB0yeJ42kSAyjPNUi1KTMAoU-SQl0LnKivAJAJVKooUS0Aaa5qkpszK3PA5uTvmVtDIrbMtuL3swcrVYi0PvwlNmgke79ikzY5a5XrvHZqTgVF5gCpreYIqD1Al5XKCOjkXRydOVXYWnfTKYqdQW4dqkLq3_2b8AtJniJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fehér, L ; Klimcik, C</creator><creatorcontrib>Fehér, L ; Klimcik, C</creatorcontrib><description>The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars–Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n−1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.</description><identifier>ISSN: 0550-3213</identifier><identifier>EISSN: 1873-1562</identifier><identifier>DOI: 10.1016/j.nuclphysb.2012.03.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Mathematical Physics ; Mathematics</subject><ispartof>Nuclear physics. B, 2012-07, Vol.860 (3), p.464-515</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-adb122b1245ac87d16d5be4afcf98a8b5d8c79af45ec6596ebae02d046fb7b8f3</citedby><cites>FETCH-LOGICAL-c398t-adb122b1245ac87d16d5be4afcf98a8b5d8c79af45ec6596ebae02d046fb7b8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nuclphysb.2012.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01267532$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fehér, L</creatorcontrib><creatorcontrib>Klimcik, C</creatorcontrib><title>Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction</title><title>Nuclear physics. B</title><description>The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars–Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n−1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.</description><subject>Mathematical Physics</subject><subject>Mathematics</subject><issn>0550-3213</issn><issn>1873-1562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkN1Kw0AQhRdRsFafwdx6kbibzebnshS1QkGwer1OdmfJhvzU3aTQO9_BN_RJTKn01oFhYDjnwPkIuWU0YpSl93XUjarZVntfRjFlcUR5RKk4IzOWZzxkIo3PyYwKQUMeM35Jrryv6TQpz2fkY4ONCfUIjR32QW-CocJA9e0W1GCNRR28jrb22AE4__P1vVFVh1ajC_zeD9gGxvVt8DmCt-EKWtsMfWehCxzqcUrou2tyYaDxePN35-T98eFtuQrXL0_Py8U6VLzIhxB0yeJ42kSAyjPNUi1KTMAoU-SQl0LnKivAJAJVKooUS0Aaa5qkpszK3PA5uTvmVtDIrbMtuL3swcrVYi0PvwlNmgke79ikzY5a5XrvHZqTgVF5gCpreYIqD1Al5XKCOjkXRydOVXYWnfTKYqdQW4dqkLq3_2b8AtJniJo</recordid><startdate>20120721</startdate><enddate>20120721</enddate><creator>Fehér, L</creator><creator>Klimcik, C</creator><general>Elsevier B.V</general><general>North-Holland ; Elsevier [1967-....]</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20120721</creationdate><title>Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction</title><author>Fehér, L ; Klimcik, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-adb122b1245ac87d16d5be4afcf98a8b5d8c79af45ec6596ebae02d046fb7b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematical Physics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehér, L</creatorcontrib><creatorcontrib>Klimcik, C</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nuclear physics. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehér, L</au><au>Klimcik, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction</atitle><jtitle>Nuclear physics. B</jtitle><date>2012-07-21</date><risdate>2012</risdate><volume>860</volume><issue>3</issue><spage>464</spage><epage>515</epage><pages>464-515</pages><issn>0550-3213</issn><eissn>1873-1562</eissn><abstract>The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars–Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n−1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nuclphysb.2012.03.005</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0550-3213 |
ispartof | Nuclear physics. B, 2012-07, Vol.860 (3), p.464-515 |
issn | 0550-3213 1873-1562 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01267532v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Mathematical Physics Mathematics |
title | Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-duality%20of%20the%20compactified%20Ruijsenaars%E2%80%93Schneider%20system%20from%20quasi-Hamiltonian%20reduction&rft.jtitle=Nuclear%20physics.%20B&rft.au=Feh%C3%A9r,%20L&rft.date=2012-07-21&rft.volume=860&rft.issue=3&rft.spage=464&rft.epage=515&rft.pages=464-515&rft.issn=0550-3213&rft.eissn=1873-1562&rft_id=info:doi/10.1016/j.nuclphysb.2012.03.005&rft_dat=%3Celsevier_hal_p%3ES0550321312001435%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0550321312001435&rfr_iscdi=true |