About the Lorentzian Yamabe problem

We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2015-02, Vol.174 (1), p.287-309
1. Verfasser: Ginoux, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 1
container_start_page 287
container_title Geometriae dedicata
container_volume 174
creator Ginoux, Nicolas
description We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.
doi_str_mv 10.1007/s10711-014-0018-8
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01265984v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01265984v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMoWFd_gLeCJw_RmXw0yXFZ1BUKXvTgKaRt4nbZbZekK-ivt6Xi0dPA8N7APEKuEe4QQN0nBIVIAQUFQE31CclQKkYNFvqUZACioFJJeU4uUtoCgFGKZeRmWfXHIR82Pi_76Lvhu3Vd_u72rvL5IfbVzu8vyVlwu-SvfueCvD0-vK7WtHx5el4tS1rzQg6Ug1SOCca8DJUE3uggDG8MD7UTJogGjdQ1omBV0TgRGDIIwVSFkNw5VfMFuZ3vbtzOHmK7d_HL9q6162Vppx0gK6TR4hNHFme2jn1K0Yc_AcFORexcZHSEnYpYPTpsdtLIdh8-2m1_jN340j_SD518YPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>About the Lorentzian Yamabe problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ginoux, Nicolas</creator><creatorcontrib>Ginoux, Nicolas</creatorcontrib><description>We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-014-0018-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Analysis of PDEs ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2015-02, Vol.174 (1), p.287-309</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</citedby><cites>FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</cites><orcidid>0000-0003-4843-4644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-014-0018-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-014-0018-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01265984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginoux, Nicolas</creatorcontrib><title>About the Lorentzian Yamabe problem</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.</description><subject>Algebraic Geometry</subject><subject>Analysis of PDEs</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMoWFd_gLeCJw_RmXw0yXFZ1BUKXvTgKaRt4nbZbZekK-ivt6Xi0dPA8N7APEKuEe4QQN0nBIVIAQUFQE31CclQKkYNFvqUZACioFJJeU4uUtoCgFGKZeRmWfXHIR82Pi_76Lvhu3Vd_u72rvL5IfbVzu8vyVlwu-SvfueCvD0-vK7WtHx5el4tS1rzQg6Ug1SOCca8DJUE3uggDG8MD7UTJogGjdQ1omBV0TgRGDIIwVSFkNw5VfMFuZ3vbtzOHmK7d_HL9q6162Vppx0gK6TR4hNHFme2jn1K0Yc_AcFORexcZHSEnYpYPTpsdtLIdh8-2m1_jN340j_SD518YPA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Ginoux, Nicolas</creator><general>Springer Netherlands</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4843-4644</orcidid></search><sort><creationdate>20150201</creationdate><title>About the Lorentzian Yamabe problem</title><author>Ginoux, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebraic Geometry</topic><topic>Analysis of PDEs</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginoux, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginoux, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the Lorentzian Yamabe problem</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>174</volume><issue>1</issue><spage>287</spage><epage>309</epage><pages>287-309</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-014-0018-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4843-4644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2015-02, Vol.174 (1), p.287-309
issn 0046-5755
1572-9168
language eng
recordid cdi_hal_primary_oai_HAL_hal_01265984v1
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Analysis of PDEs
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title About the Lorentzian Yamabe problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20Lorentzian%20Yamabe%20problem&rft.jtitle=Geometriae%20dedicata&rft.au=Ginoux,%20Nicolas&rft.date=2015-02-01&rft.volume=174&rft.issue=1&rft.spage=287&rft.epage=309&rft.pages=287-309&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-014-0018-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01265984v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true