About the Lorentzian Yamabe problem
We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2015-02, Vol.174 (1), p.287-309 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | 1 |
container_start_page | 287 |
container_title | Geometriae dedicata |
container_volume | 174 |
creator | Ginoux, Nicolas |
description | We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general. |
doi_str_mv | 10.1007/s10711-014-0018-8 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01265984v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01265984v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMoWFd_gLeCJw_RmXw0yXFZ1BUKXvTgKaRt4nbZbZekK-ivt6Xi0dPA8N7APEKuEe4QQN0nBIVIAQUFQE31CclQKkYNFvqUZACioFJJeU4uUtoCgFGKZeRmWfXHIR82Pi_76Lvhu3Vd_u72rvL5IfbVzu8vyVlwu-SvfueCvD0-vK7WtHx5el4tS1rzQg6Ug1SOCca8DJUE3uggDG8MD7UTJogGjdQ1omBV0TgRGDIIwVSFkNw5VfMFuZ3vbtzOHmK7d_HL9q6162Vppx0gK6TR4hNHFme2jn1K0Yc_AcFORexcZHSEnYpYPTpsdtLIdh8-2m1_jN340j_SD518YPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>About the Lorentzian Yamabe problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ginoux, Nicolas</creator><creatorcontrib>Ginoux, Nicolas</creatorcontrib><description>We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-014-0018-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Analysis of PDEs ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2015-02, Vol.174 (1), p.287-309</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</citedby><cites>FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</cites><orcidid>0000-0003-4843-4644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-014-0018-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-014-0018-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01265984$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginoux, Nicolas</creatorcontrib><title>About the Lorentzian Yamabe problem</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.</description><subject>Algebraic Geometry</subject><subject>Analysis of PDEs</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMoWFd_gLeCJw_RmXw0yXFZ1BUKXvTgKaRt4nbZbZekK-ivt6Xi0dPA8N7APEKuEe4QQN0nBIVIAQUFQE31CclQKkYNFvqUZACioFJJeU4uUtoCgFGKZeRmWfXHIR82Pi_76Lvhu3Vd_u72rvL5IfbVzu8vyVlwu-SvfueCvD0-vK7WtHx5el4tS1rzQg6Ug1SOCca8DJUE3uggDG8MD7UTJogGjdQ1omBV0TgRGDIIwVSFkNw5VfMFuZ3vbtzOHmK7d_HL9q6162Vppx0gK6TR4hNHFme2jn1K0Yc_AcFORexcZHSEnYpYPTpsdtLIdh8-2m1_jN340j_SD518YPA</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Ginoux, Nicolas</creator><general>Springer Netherlands</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4843-4644</orcidid></search><sort><creationdate>20150201</creationdate><title>About the Lorentzian Yamabe problem</title><author>Ginoux, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-3057a2422e5fb503d8f493d93fca49f4d1958c1142b6da4f2120ff9b6453aa7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebraic Geometry</topic><topic>Analysis of PDEs</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginoux, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginoux, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the Lorentzian Yamabe problem</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>174</volume><issue>1</issue><spage>287</spage><epage>309</epage><pages>287-309</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We investigate the solutions to the Yamabe problem on globally hyperbolic spacetimes. On standard static spacetimes, we prove the existence of global solutions and show with the help of examples that uniqueness does not hold in general.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-014-0018-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4843-4644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2015-02, Vol.174 (1), p.287-309 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01265984v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebraic Geometry Analysis of PDEs Convex and Discrete Geometry Differential Geometry Hyperbolic Geometry Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | About the Lorentzian Yamabe problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20Lorentzian%20Yamabe%20problem&rft.jtitle=Geometriae%20dedicata&rft.au=Ginoux,%20Nicolas&rft.date=2015-02-01&rft.volume=174&rft.issue=1&rft.spage=287&rft.epage=309&rft.pages=287-309&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-014-0018-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01265984v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |