Dynamics of viscous vesicles in shear flow
The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess su...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2006-04, Vol.19 (4), p.389-397 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | 4 |
container_start_page | 389 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 19 |
creator | MADER, M.-A VITKOVA, V ABKARIAN, M VIALLAT, A PODGORSKI, T |
description | The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood. |
doi_str_mv | 10.1140/epje/i2005-10058-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01261886v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67905440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</originalsourceid><addsrcrecordid>eNpFkEtLAzEYRYMotlb_gAuZjYLC2GSSySTLUh8VCm4U3IU084WmzKNO2rH996bt0G6SEM69cA9CtwQ_E8LwEJYLGLoE4zQm4RDx5gz1SSKTWMj05_z4ZqSHrrxfYIxDjF6iHuEcZyzjffT0sq106YyPahu1zpt67aMWvDMF-MhVkZ-DbiJb1H_X6MLqwsNNdw_Q99vr13gSTz_fP8ajaWwoT1cxl8ZameZiJsFImbNZYjgxjPKMAzAqNdXWaCMtUCa1AMpxijUzBHJJspQO0OOhd64LtWxcqZutqrVTk9FU7f4wSTgRgrcksA8HdtnUv2vwK1WGDVAUuoKwRPFM4pSF0QOUHEDT1N43YI_NBKudTbWzqfY21d6m2oTQXde-npWQnyKdvgDcd4D2Rhe20ZVx_sRlIiEZFfQfqfR9LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67905440</pqid></control><display><type>article</type><title>Dynamics of viscous vesicles in shear flow</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>MADER, M.-A ; VITKOVA, V ; ABKARIAN, M ; VIALLAT, A ; PODGORSKI, T</creator><creatorcontrib>MADER, M.-A ; VITKOVA, V ; ABKARIAN, M ; VIALLAT, A ; PODGORSKI, T</creatorcontrib><description>The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2005-10058-x</identifier><identifier>PMID: 16607476</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biomechanics ; Chemistry ; Colloidal state and disperse state ; Computer Simulation ; Condensed Matter ; Elasticity ; Exact sciences and technology ; Fluid mechanics ; General and physical chemistry ; Liposomes - chemistry ; Mechanics ; Membrane Fluidity ; Membrane Lipids - chemistry ; Membranes ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Phase Transition ; Phosphatidylcholines - analysis ; Phosphatidylcholines - chemistry ; Physics ; Shear Strength ; Soft Condensed Matter ; Stress, Mechanical ; Viscosity ; Water - chemistry</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2006-04, Vol.19 (4), p.389-397</ispartof><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</citedby><cites>FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</cites><orcidid>0000-0001-6469-9170 ; 0000-0001-5802-269X ; 0000-0003-0411-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17821738$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16607476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01261886$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>MADER, M.-A</creatorcontrib><creatorcontrib>VITKOVA, V</creatorcontrib><creatorcontrib>ABKARIAN, M</creatorcontrib><creatorcontrib>VIALLAT, A</creatorcontrib><creatorcontrib>PODGORSKI, T</creatorcontrib><title>Dynamics of viscous vesicles in shear flow</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur Phys J E Soft Matter</addtitle><description>The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.</description><subject>Biomechanics</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computer Simulation</subject><subject>Condensed Matter</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>General and physical chemistry</subject><subject>Liposomes - chemistry</subject><subject>Mechanics</subject><subject>Membrane Fluidity</subject><subject>Membrane Lipids - chemistry</subject><subject>Membranes</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Phase Transition</subject><subject>Phosphatidylcholines - analysis</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Physics</subject><subject>Shear Strength</subject><subject>Soft Condensed Matter</subject><subject>Stress, Mechanical</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLAzEYRYMotlb_gAuZjYLC2GSSySTLUh8VCm4U3IU084WmzKNO2rH996bt0G6SEM69cA9CtwQ_E8LwEJYLGLoE4zQm4RDx5gz1SSKTWMj05_z4ZqSHrrxfYIxDjF6iHuEcZyzjffT0sq106YyPahu1zpt67aMWvDMF-MhVkZ-DbiJb1H_X6MLqwsNNdw_Q99vr13gSTz_fP8ajaWwoT1cxl8ZameZiJsFImbNZYjgxjPKMAzAqNdXWaCMtUCa1AMpxijUzBHJJspQO0OOhd64LtWxcqZutqrVTk9FU7f4wSTgRgrcksA8HdtnUv2vwK1WGDVAUuoKwRPFM4pSF0QOUHEDT1N43YI_NBKudTbWzqfY21d6m2oTQXde-npWQnyKdvgDcd4D2Rhe20ZVx_sRlIiEZFfQfqfR9LA</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>MADER, M.-A</creator><creator>VITKOVA, V</creator><creator>ABKARIAN, M</creator><creator>VIALLAT, A</creator><creator>PODGORSKI, T</creator><general>Springer</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6469-9170</orcidid><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid></search><sort><creationdate>20060401</creationdate><title>Dynamics of viscous vesicles in shear flow</title><author>MADER, M.-A ; VITKOVA, V ; ABKARIAN, M ; VIALLAT, A ; PODGORSKI, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomechanics</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computer Simulation</topic><topic>Condensed Matter</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>General and physical chemistry</topic><topic>Liposomes - chemistry</topic><topic>Mechanics</topic><topic>Membrane Fluidity</topic><topic>Membrane Lipids - chemistry</topic><topic>Membranes</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Phase Transition</topic><topic>Phosphatidylcholines - analysis</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Physics</topic><topic>Shear Strength</topic><topic>Soft Condensed Matter</topic><topic>Stress, Mechanical</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MADER, M.-A</creatorcontrib><creatorcontrib>VITKOVA, V</creatorcontrib><creatorcontrib>ABKARIAN, M</creatorcontrib><creatorcontrib>VIALLAT, A</creatorcontrib><creatorcontrib>PODGORSKI, T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MADER, M.-A</au><au>VITKOVA, V</au><au>ABKARIAN, M</au><au>VIALLAT, A</au><au>PODGORSKI, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of viscous vesicles in shear flow</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>19</volume><issue>4</issue><spage>389</spage><epage>397</epage><pages>389-397</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>16607476</pmid><doi>10.1140/epje/i2005-10058-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6469-9170</orcidid><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2006-04, Vol.19 (4), p.389-397 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01261886v1 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biomechanics Chemistry Colloidal state and disperse state Computer Simulation Condensed Matter Elasticity Exact sciences and technology Fluid mechanics General and physical chemistry Liposomes - chemistry Mechanics Membrane Fluidity Membrane Lipids - chemistry Membranes Models, Chemical Models, Molecular Molecular Conformation Phase Transition Phosphatidylcholines - analysis Phosphatidylcholines - chemistry Physics Shear Strength Soft Condensed Matter Stress, Mechanical Viscosity Water - chemistry |
title | Dynamics of viscous vesicles in shear flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20viscous%20vesicles%20in%20shear%20flow&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=MADER,%20M.-A&rft.date=2006-04-01&rft.volume=19&rft.issue=4&rft.spage=389&rft.epage=397&rft.pages=389-397&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2005-10058-x&rft_dat=%3Cproquest_hal_p%3E67905440%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67905440&rft_id=info:pmid/16607476&rfr_iscdi=true |