Dynamics of viscous vesicles in shear flow

The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2006-04, Vol.19 (4), p.389-397
Hauptverfasser: MADER, M.-A, VITKOVA, V, ABKARIAN, M, VIALLAT, A, PODGORSKI, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 4
container_start_page 389
container_title The European physical journal. E, Soft matter and biological physics
container_volume 19
creator MADER, M.-A
VITKOVA, V
ABKARIAN, M
VIALLAT, A
PODGORSKI, T
description The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.
doi_str_mv 10.1140/epje/i2005-10058-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01261886v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67905440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</originalsourceid><addsrcrecordid>eNpFkEtLAzEYRYMotlb_gAuZjYLC2GSSySTLUh8VCm4U3IU084WmzKNO2rH996bt0G6SEM69cA9CtwQ_E8LwEJYLGLoE4zQm4RDx5gz1SSKTWMj05_z4ZqSHrrxfYIxDjF6iHuEcZyzjffT0sq106YyPahu1zpt67aMWvDMF-MhVkZ-DbiJb1H_X6MLqwsNNdw_Q99vr13gSTz_fP8ajaWwoT1cxl8ZameZiJsFImbNZYjgxjPKMAzAqNdXWaCMtUCa1AMpxijUzBHJJspQO0OOhd64LtWxcqZutqrVTk9FU7f4wSTgRgrcksA8HdtnUv2vwK1WGDVAUuoKwRPFM4pSF0QOUHEDT1N43YI_NBKudTbWzqfY21d6m2oTQXde-npWQnyKdvgDcd4D2Rhe20ZVx_sRlIiEZFfQfqfR9LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67905440</pqid></control><display><type>article</type><title>Dynamics of viscous vesicles in shear flow</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>MADER, M.-A ; VITKOVA, V ; ABKARIAN, M ; VIALLAT, A ; PODGORSKI, T</creator><creatorcontrib>MADER, M.-A ; VITKOVA, V ; ABKARIAN, M ; VIALLAT, A ; PODGORSKI, T</creatorcontrib><description>The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2005-10058-x</identifier><identifier>PMID: 16607476</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Biomechanics ; Chemistry ; Colloidal state and disperse state ; Computer Simulation ; Condensed Matter ; Elasticity ; Exact sciences and technology ; Fluid mechanics ; General and physical chemistry ; Liposomes - chemistry ; Mechanics ; Membrane Fluidity ; Membrane Lipids - chemistry ; Membranes ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Phase Transition ; Phosphatidylcholines - analysis ; Phosphatidylcholines - chemistry ; Physics ; Shear Strength ; Soft Condensed Matter ; Stress, Mechanical ; Viscosity ; Water - chemistry</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2006-04, Vol.19 (4), p.389-397</ispartof><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</citedby><cites>FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</cites><orcidid>0000-0001-6469-9170 ; 0000-0001-5802-269X ; 0000-0003-0411-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17821738$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16607476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01261886$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>MADER, M.-A</creatorcontrib><creatorcontrib>VITKOVA, V</creatorcontrib><creatorcontrib>ABKARIAN, M</creatorcontrib><creatorcontrib>VIALLAT, A</creatorcontrib><creatorcontrib>PODGORSKI, T</creatorcontrib><title>Dynamics of viscous vesicles in shear flow</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur Phys J E Soft Matter</addtitle><description>The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.</description><subject>Biomechanics</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computer Simulation</subject><subject>Condensed Matter</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>General and physical chemistry</subject><subject>Liposomes - chemistry</subject><subject>Mechanics</subject><subject>Membrane Fluidity</subject><subject>Membrane Lipids - chemistry</subject><subject>Membranes</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Phase Transition</subject><subject>Phosphatidylcholines - analysis</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Physics</subject><subject>Shear Strength</subject><subject>Soft Condensed Matter</subject><subject>Stress, Mechanical</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLAzEYRYMotlb_gAuZjYLC2GSSySTLUh8VCm4U3IU084WmzKNO2rH996bt0G6SEM69cA9CtwQ_E8LwEJYLGLoE4zQm4RDx5gz1SSKTWMj05_z4ZqSHrrxfYIxDjF6iHuEcZyzjffT0sq106YyPahu1zpt67aMWvDMF-MhVkZ-DbiJb1H_X6MLqwsNNdw_Q99vr13gSTz_fP8ajaWwoT1cxl8ZameZiJsFImbNZYjgxjPKMAzAqNdXWaCMtUCa1AMpxijUzBHJJspQO0OOhd64LtWxcqZutqrVTk9FU7f4wSTgRgrcksA8HdtnUv2vwK1WGDVAUuoKwRPFM4pSF0QOUHEDT1N43YI_NBKudTbWzqfY21d6m2oTQXde-npWQnyKdvgDcd4D2Rhe20ZVx_sRlIiEZFfQfqfR9LA</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>MADER, M.-A</creator><creator>VITKOVA, V</creator><creator>ABKARIAN, M</creator><creator>VIALLAT, A</creator><creator>PODGORSKI, T</creator><general>Springer</general><general>EDP Sciences: EPJ</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6469-9170</orcidid><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid></search><sort><creationdate>20060401</creationdate><title>Dynamics of viscous vesicles in shear flow</title><author>MADER, M.-A ; VITKOVA, V ; ABKARIAN, M ; VIALLAT, A ; PODGORSKI, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-69cff95d8b9ec99d4b2c61c43676ee439a3afcac9fe349a8e36050a4c1ed91753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biomechanics</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computer Simulation</topic><topic>Condensed Matter</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>General and physical chemistry</topic><topic>Liposomes - chemistry</topic><topic>Mechanics</topic><topic>Membrane Fluidity</topic><topic>Membrane Lipids - chemistry</topic><topic>Membranes</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Phase Transition</topic><topic>Phosphatidylcholines - analysis</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Physics</topic><topic>Shear Strength</topic><topic>Soft Condensed Matter</topic><topic>Stress, Mechanical</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MADER, M.-A</creatorcontrib><creatorcontrib>VITKOVA, V</creatorcontrib><creatorcontrib>ABKARIAN, M</creatorcontrib><creatorcontrib>VIALLAT, A</creatorcontrib><creatorcontrib>PODGORSKI, T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MADER, M.-A</au><au>VITKOVA, V</au><au>ABKARIAN, M</au><au>VIALLAT, A</au><au>PODGORSKI, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of viscous vesicles in shear flow</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>19</volume><issue>4</issue><spage>389</spage><epage>397</epage><pages>389-397</pages><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>The dynamics of giant lipid vesicles under shear flow is experimentally investigated. Consistent with previous theoretical and numerical studies, two flow regimes are identified depending on the viscosity ratio between the interior and the exterior of the vesicle, and its reduced volume or excess surface. At low viscosity ratios, a tank-treading motion of the membrane takes place, the vesicle assuming a constant orientation with respect to the flow direction. At higher viscosity ratios, a tumbling motion is observed in which the whole vesicle rotates with a periodically modulated velocity. When the shear rate increases, this tumbling motion becomes increasingly sensitive to vesicle deformation due to the elongational component of the flow and significant deviations from simpler models are observed. A good characterization of these various flow regimes is essential for the validation of analytical and numerical models, and to relate microscopic dynamics to macroscopic rheology of suspensions of deformable particles, such as blood.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>16607476</pmid><doi>10.1140/epje/i2005-10058-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6469-9170</orcidid><orcidid>https://orcid.org/0000-0001-5802-269X</orcidid><orcidid>https://orcid.org/0000-0003-0411-3187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2006-04, Vol.19 (4), p.389-397
issn 1292-8941
1292-895X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01261886v1
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomechanics
Chemistry
Colloidal state and disperse state
Computer Simulation
Condensed Matter
Elasticity
Exact sciences and technology
Fluid mechanics
General and physical chemistry
Liposomes - chemistry
Mechanics
Membrane Fluidity
Membrane Lipids - chemistry
Membranes
Models, Chemical
Models, Molecular
Molecular Conformation
Phase Transition
Phosphatidylcholines - analysis
Phosphatidylcholines - chemistry
Physics
Shear Strength
Soft Condensed Matter
Stress, Mechanical
Viscosity
Water - chemistry
title Dynamics of viscous vesicles in shear flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20viscous%20vesicles%20in%20shear%20flow&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=MADER,%20M.-A&rft.date=2006-04-01&rft.volume=19&rft.issue=4&rft.spage=389&rft.epage=397&rft.pages=389-397&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2005-10058-x&rft_dat=%3Cproquest_hal_p%3E67905440%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67905440&rft_id=info:pmid/16607476&rfr_iscdi=true