Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiolo...
Gespeichert in:
Veröffentlicht in: | Journal of phycology 2014-02, Vol.50 (1), p.140-148 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 140 |
container_title | Journal of phycology |
container_volume | 50 |
creator | Bendif , El Mahdi Probert, Ian Carmichael, Margaux Romac, Sarah Hagino, Kyoko Vargas, Colomban Mock, T |
description | Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring. |
doi_str_mv | 10.1111/jpy.12147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01258218v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774529218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</originalsourceid><addsrcrecordid>eNp1ks1uEzEQx1cIREPhwAuApV7aw7Ye73o_jlXVJkURn0UILtbEO8s6bNaLvWmaG28Az8iT4DRtkJDwxaPxb_5jz99R9Bz4MYR1Mu_XxyAgzR9EI5CijIsC8ofRiHMh4iRLs73oifdzznmeSXgc7YmsLAoOchT9HFNHg9GsotZ0hIOxHZvRsCLqGHYVW5mhMR0bGgphRb53hBXTVmvbhiPbN9YRW1gXgt8_fvmetCHPzhemNdgZZM3ypqW1uRUbU9-sndXYe2RWUwA0ssMJ9kMQWg949DR6VGPr6dndvh9dXZxfnU3i6Zvx5dnpNNZS8jxGSjJdFbVM6jqvQqBFAjOptajKXNcoiWeQUzHTgIJ4SGNSUzIrtUQMVfvR0Va2wVb1zizQrZVFoyanU7XJcRCyEFBcQ2APt2zv7Pcl-UEtjNfUttiRXXoFeZ6GoQc4oAf_oHO7dF14iIK0LEBkwOFvc-2s947q3Q2Aq42hKhiqbg0N7Is7xeVsQdWOvHcwACdbYGXCmP-vpF69_XwvGW8rjB_oZleB7pvK8iSX6tPrsSq_vH93kXJQmw4vt3yNVuFXZ7z6-EFwSMN_KtKUZ8kf2efGbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498126101</pqid></control><display><type>article</type><title>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</title><source>Wiley Online Library All Journals</source><creator>Bendif , El Mahdi ; Probert, Ian ; Carmichael, Margaux ; Romac, Sarah ; Hagino, Kyoko ; Vargas, Colomban ; Mock, T</creator><contributor>Mock, T. ; Mock, T.</contributor><creatorcontrib>Bendif , El Mahdi ; Probert, Ian ; Carmichael, Margaux ; Romac, Sarah ; Hagino, Kyoko ; Vargas, Colomban ; Mock, T ; Mock, T. ; Mock, T.</creatorcontrib><description>Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.</description><identifier>ISSN: 0022-3646</identifier><identifier>EISSN: 1529-8817</identifier><identifier>DOI: 10.1111/jpy.12147</identifier><identifier>PMID: 26988015</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>acidification ; barcoding ; Biodiversity ; carbon ; coccolithophore ; DNA barcoding ; Emiliania huxleyi ; environmental monitoring ; genes ; genetic markers ; Gephyrocapsa oceanica ; global change ; Life Sciences ; Microbiology and Parasitology ; phylogeny ; physiology ; ribosomal DNA ; sorting ; species complex ; surveys ; Systematics, Phylogenetics and taxonomy ; trophic relationships</subject><ispartof>Journal of phycology, 2014-02, Vol.50 (1), p.140-148</ispartof><rights>2013 Phycological Society of America</rights><rights>2013 Phycological Society of America.</rights><rights>2014 Phycological Society of America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</citedby><cites>FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</cites><orcidid>0000-0002-1643-1759 ; 0000-0002-6476-6019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjpy.12147$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjpy.12147$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26988015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01258218$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Mock, T.</contributor><contributor>Mock, T.</contributor><creatorcontrib>Bendif , El Mahdi</creatorcontrib><creatorcontrib>Probert, Ian</creatorcontrib><creatorcontrib>Carmichael, Margaux</creatorcontrib><creatorcontrib>Romac, Sarah</creatorcontrib><creatorcontrib>Hagino, Kyoko</creatorcontrib><creatorcontrib>Vargas, Colomban</creatorcontrib><creatorcontrib>Mock, T</creatorcontrib><title>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</title><title>Journal of phycology</title><addtitle>J. Phycol</addtitle><description>Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.</description><subject>acidification</subject><subject>barcoding</subject><subject>Biodiversity</subject><subject>carbon</subject><subject>coccolithophore</subject><subject>DNA barcoding</subject><subject>Emiliania huxleyi</subject><subject>environmental monitoring</subject><subject>genes</subject><subject>genetic markers</subject><subject>Gephyrocapsa oceanica</subject><subject>global change</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>phylogeny</subject><subject>physiology</subject><subject>ribosomal DNA</subject><subject>sorting</subject><subject>species complex</subject><subject>surveys</subject><subject>Systematics, Phylogenetics and taxonomy</subject><subject>trophic relationships</subject><issn>0022-3646</issn><issn>1529-8817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1ks1uEzEQx1cIREPhwAuApV7aw7Ye73o_jlXVJkURn0UILtbEO8s6bNaLvWmaG28Az8iT4DRtkJDwxaPxb_5jz99R9Bz4MYR1Mu_XxyAgzR9EI5CijIsC8ofRiHMh4iRLs73oifdzznmeSXgc7YmsLAoOchT9HFNHg9GsotZ0hIOxHZvRsCLqGHYVW5mhMR0bGgphRb53hBXTVmvbhiPbN9YRW1gXgt8_fvmetCHPzhemNdgZZM3ypqW1uRUbU9-sndXYe2RWUwA0ssMJ9kMQWg949DR6VGPr6dndvh9dXZxfnU3i6Zvx5dnpNNZS8jxGSjJdFbVM6jqvQqBFAjOptajKXNcoiWeQUzHTgIJ4SGNSUzIrtUQMVfvR0Va2wVb1zizQrZVFoyanU7XJcRCyEFBcQ2APt2zv7Pcl-UEtjNfUttiRXXoFeZ6GoQc4oAf_oHO7dF14iIK0LEBkwOFvc-2s947q3Q2Aq42hKhiqbg0N7Is7xeVsQdWOvHcwACdbYGXCmP-vpF69_XwvGW8rjB_oZleB7pvK8iSX6tPrsSq_vH93kXJQmw4vt3yNVuFXZ7z6-EFwSMN_KtKUZ8kf2efGbQ</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Bendif , El Mahdi</creator><creator>Probert, Ian</creator><creator>Carmichael, Margaux</creator><creator>Romac, Sarah</creator><creator>Hagino, Kyoko</creator><creator>Vargas, Colomban</creator><creator>Mock, T</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1643-1759</orcidid><orcidid>https://orcid.org/0000-0002-6476-6019</orcidid></search><sort><creationdate>201402</creationdate><title>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</title><author>Bendif , El Mahdi ; Probert, Ian ; Carmichael, Margaux ; Romac, Sarah ; Hagino, Kyoko ; Vargas, Colomban ; Mock, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acidification</topic><topic>barcoding</topic><topic>Biodiversity</topic><topic>carbon</topic><topic>coccolithophore</topic><topic>DNA barcoding</topic><topic>Emiliania huxleyi</topic><topic>environmental monitoring</topic><topic>genes</topic><topic>genetic markers</topic><topic>Gephyrocapsa oceanica</topic><topic>global change</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>phylogeny</topic><topic>physiology</topic><topic>ribosomal DNA</topic><topic>sorting</topic><topic>species complex</topic><topic>surveys</topic><topic>Systematics, Phylogenetics and taxonomy</topic><topic>trophic relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendif , El Mahdi</creatorcontrib><creatorcontrib>Probert, Ian</creatorcontrib><creatorcontrib>Carmichael, Margaux</creatorcontrib><creatorcontrib>Romac, Sarah</creatorcontrib><creatorcontrib>Hagino, Kyoko</creatorcontrib><creatorcontrib>Vargas, Colomban</creatorcontrib><creatorcontrib>Mock, T</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendif , El Mahdi</au><au>Probert, Ian</au><au>Carmichael, Margaux</au><au>Romac, Sarah</au><au>Hagino, Kyoko</au><au>Vargas, Colomban</au><au>Mock, T</au><au>Mock, T.</au><au>Mock, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</atitle><jtitle>Journal of phycology</jtitle><addtitle>J. Phycol</addtitle><date>2014-02</date><risdate>2014</risdate><volume>50</volume><issue>1</issue><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0022-3646</issn><eissn>1529-8817</eissn><abstract>Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26988015</pmid><doi>10.1111/jpy.12147</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1643-1759</orcidid><orcidid>https://orcid.org/0000-0002-6476-6019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3646 |
ispartof | Journal of phycology, 2014-02, Vol.50 (1), p.140-148 |
issn | 0022-3646 1529-8817 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01258218v1 |
source | Wiley Online Library All Journals |
subjects | acidification barcoding Biodiversity carbon coccolithophore DNA barcoding Emiliania huxleyi environmental monitoring genes genetic markers Gephyrocapsa oceanica global change Life Sciences Microbiology and Parasitology phylogeny physiology ribosomal DNA sorting species complex surveys Systematics, Phylogenetics and taxonomy trophic relationships |
title | Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20delineation%20between%20and%20within%20the%20widespread%20coccolithophore%20morpho%E2%80%90species%20Emiliania%20huxleyi%20and%20Gephyrocapsa%20oceanica%20(Haptophyta)&rft.jtitle=Journal%20of%20phycology&rft.au=Bendif%20,%20El%20Mahdi&rft.date=2014-02&rft.volume=50&rft.issue=1&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0022-3646&rft.eissn=1529-8817&rft_id=info:doi/10.1111/jpy.12147&rft_dat=%3Cproquest_hal_p%3E1774529218%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498126101&rft_id=info:pmid/26988015&rfr_iscdi=true |