Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)

Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phycology 2014-02, Vol.50 (1), p.140-148
Hauptverfasser: Bendif , El Mahdi, Probert, Ian, Carmichael, Margaux, Romac, Sarah, Hagino, Kyoko, Vargas, Colomban, Mock, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 140
container_title Journal of phycology
container_volume 50
creator Bendif , El Mahdi
Probert, Ian
Carmichael, Margaux
Romac, Sarah
Hagino, Kyoko
Vargas, Colomban
Mock, T
description Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.
doi_str_mv 10.1111/jpy.12147
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01258218v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1774529218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</originalsourceid><addsrcrecordid>eNp1ks1uEzEQx1cIREPhwAuApV7aw7Ye73o_jlXVJkURn0UILtbEO8s6bNaLvWmaG28Az8iT4DRtkJDwxaPxb_5jz99R9Bz4MYR1Mu_XxyAgzR9EI5CijIsC8ofRiHMh4iRLs73oifdzznmeSXgc7YmsLAoOchT9HFNHg9GsotZ0hIOxHZvRsCLqGHYVW5mhMR0bGgphRb53hBXTVmvbhiPbN9YRW1gXgt8_fvmetCHPzhemNdgZZM3ypqW1uRUbU9-sndXYe2RWUwA0ssMJ9kMQWg949DR6VGPr6dndvh9dXZxfnU3i6Zvx5dnpNNZS8jxGSjJdFbVM6jqvQqBFAjOptajKXNcoiWeQUzHTgIJ4SGNSUzIrtUQMVfvR0Va2wVb1zizQrZVFoyanU7XJcRCyEFBcQ2APt2zv7Pcl-UEtjNfUttiRXXoFeZ6GoQc4oAf_oHO7dF14iIK0LEBkwOFvc-2s947q3Q2Aq42hKhiqbg0N7Is7xeVsQdWOvHcwACdbYGXCmP-vpF69_XwvGW8rjB_oZleB7pvK8iSX6tPrsSq_vH93kXJQmw4vt3yNVuFXZ7z6-EFwSMN_KtKUZ8kf2efGbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498126101</pqid></control><display><type>article</type><title>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</title><source>Wiley Online Library All Journals</source><creator>Bendif , El Mahdi ; Probert, Ian ; Carmichael, Margaux ; Romac, Sarah ; Hagino, Kyoko ; Vargas, Colomban ; Mock, T</creator><contributor>Mock, T. ; Mock, T.</contributor><creatorcontrib>Bendif , El Mahdi ; Probert, Ian ; Carmichael, Margaux ; Romac, Sarah ; Hagino, Kyoko ; Vargas, Colomban ; Mock, T ; Mock, T. ; Mock, T.</creatorcontrib><description>Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.</description><identifier>ISSN: 0022-3646</identifier><identifier>EISSN: 1529-8817</identifier><identifier>DOI: 10.1111/jpy.12147</identifier><identifier>PMID: 26988015</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>acidification ; barcoding ; Biodiversity ; carbon ; coccolithophore ; DNA barcoding ; Emiliania huxleyi ; environmental monitoring ; genes ; genetic markers ; Gephyrocapsa oceanica ; global change ; Life Sciences ; Microbiology and Parasitology ; phylogeny ; physiology ; ribosomal DNA ; sorting ; species complex ; surveys ; Systematics, Phylogenetics and taxonomy ; trophic relationships</subject><ispartof>Journal of phycology, 2014-02, Vol.50 (1), p.140-148</ispartof><rights>2013 Phycological Society of America</rights><rights>2013 Phycological Society of America.</rights><rights>2014 Phycological Society of America</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</citedby><cites>FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</cites><orcidid>0000-0002-1643-1759 ; 0000-0002-6476-6019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjpy.12147$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjpy.12147$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26988015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01258218$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Mock, T.</contributor><contributor>Mock, T.</contributor><creatorcontrib>Bendif , El Mahdi</creatorcontrib><creatorcontrib>Probert, Ian</creatorcontrib><creatorcontrib>Carmichael, Margaux</creatorcontrib><creatorcontrib>Romac, Sarah</creatorcontrib><creatorcontrib>Hagino, Kyoko</creatorcontrib><creatorcontrib>Vargas, Colomban</creatorcontrib><creatorcontrib>Mock, T</creatorcontrib><title>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</title><title>Journal of phycology</title><addtitle>J. Phycol</addtitle><description>Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.</description><subject>acidification</subject><subject>barcoding</subject><subject>Biodiversity</subject><subject>carbon</subject><subject>coccolithophore</subject><subject>DNA barcoding</subject><subject>Emiliania huxleyi</subject><subject>environmental monitoring</subject><subject>genes</subject><subject>genetic markers</subject><subject>Gephyrocapsa oceanica</subject><subject>global change</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>phylogeny</subject><subject>physiology</subject><subject>ribosomal DNA</subject><subject>sorting</subject><subject>species complex</subject><subject>surveys</subject><subject>Systematics, Phylogenetics and taxonomy</subject><subject>trophic relationships</subject><issn>0022-3646</issn><issn>1529-8817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1ks1uEzEQx1cIREPhwAuApV7aw7Ye73o_jlXVJkURn0UILtbEO8s6bNaLvWmaG28Az8iT4DRtkJDwxaPxb_5jz99R9Bz4MYR1Mu_XxyAgzR9EI5CijIsC8ofRiHMh4iRLs73oifdzznmeSXgc7YmsLAoOchT9HFNHg9GsotZ0hIOxHZvRsCLqGHYVW5mhMR0bGgphRb53hBXTVmvbhiPbN9YRW1gXgt8_fvmetCHPzhemNdgZZM3ypqW1uRUbU9-sndXYe2RWUwA0ssMJ9kMQWg949DR6VGPr6dndvh9dXZxfnU3i6Zvx5dnpNNZS8jxGSjJdFbVM6jqvQqBFAjOptajKXNcoiWeQUzHTgIJ4SGNSUzIrtUQMVfvR0Va2wVb1zizQrZVFoyanU7XJcRCyEFBcQ2APt2zv7Pcl-UEtjNfUttiRXXoFeZ6GoQc4oAf_oHO7dF14iIK0LEBkwOFvc-2s947q3Q2Aq42hKhiqbg0N7Is7xeVsQdWOvHcwACdbYGXCmP-vpF69_XwvGW8rjB_oZleB7pvK8iSX6tPrsSq_vH93kXJQmw4vt3yNVuFXZ7z6-EFwSMN_KtKUZ8kf2efGbQ</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Bendif , El Mahdi</creator><creator>Probert, Ian</creator><creator>Carmichael, Margaux</creator><creator>Romac, Sarah</creator><creator>Hagino, Kyoko</creator><creator>Vargas, Colomban</creator><creator>Mock, T</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1643-1759</orcidid><orcidid>https://orcid.org/0000-0002-6476-6019</orcidid></search><sort><creationdate>201402</creationdate><title>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</title><author>Bendif , El Mahdi ; Probert, Ian ; Carmichael, Margaux ; Romac, Sarah ; Hagino, Kyoko ; Vargas, Colomban ; Mock, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5507-ae36cd8f53ff7dd8fc231b5cc2d97cfa5e0617e8bc1a2e0c2da3fe3b9c5aaf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acidification</topic><topic>barcoding</topic><topic>Biodiversity</topic><topic>carbon</topic><topic>coccolithophore</topic><topic>DNA barcoding</topic><topic>Emiliania huxleyi</topic><topic>environmental monitoring</topic><topic>genes</topic><topic>genetic markers</topic><topic>Gephyrocapsa oceanica</topic><topic>global change</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>phylogeny</topic><topic>physiology</topic><topic>ribosomal DNA</topic><topic>sorting</topic><topic>species complex</topic><topic>surveys</topic><topic>Systematics, Phylogenetics and taxonomy</topic><topic>trophic relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bendif , El Mahdi</creatorcontrib><creatorcontrib>Probert, Ian</creatorcontrib><creatorcontrib>Carmichael, Margaux</creatorcontrib><creatorcontrib>Romac, Sarah</creatorcontrib><creatorcontrib>Hagino, Kyoko</creatorcontrib><creatorcontrib>Vargas, Colomban</creatorcontrib><creatorcontrib>Mock, T</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of phycology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bendif , El Mahdi</au><au>Probert, Ian</au><au>Carmichael, Margaux</au><au>Romac, Sarah</au><au>Hagino, Kyoko</au><au>Vargas, Colomban</au><au>Mock, T</au><au>Mock, T.</au><au>Mock, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)</atitle><jtitle>Journal of phycology</jtitle><addtitle>J. Phycol</addtitle><date>2014-02</date><risdate>2014</risdate><volume>50</volume><issue>1</issue><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0022-3646</issn><eissn>1529-8817</eissn><abstract>Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26988015</pmid><doi>10.1111/jpy.12147</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1643-1759</orcidid><orcidid>https://orcid.org/0000-0002-6476-6019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3646
ispartof Journal of phycology, 2014-02, Vol.50 (1), p.140-148
issn 0022-3646
1529-8817
language eng
recordid cdi_hal_primary_oai_HAL_hal_01258218v1
source Wiley Online Library All Journals
subjects acidification
barcoding
Biodiversity
carbon
coccolithophore
DNA barcoding
Emiliania huxleyi
environmental monitoring
genes
genetic markers
Gephyrocapsa oceanica
global change
Life Sciences
Microbiology and Parasitology
phylogeny
physiology
ribosomal DNA
sorting
species complex
surveys
Systematics, Phylogenetics and taxonomy
trophic relationships
title Genetic delineation between and within the widespread coccolithophore morpho‐species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A01%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20delineation%20between%20and%20within%20the%20widespread%20coccolithophore%20morpho%E2%80%90species%20Emiliania%20huxleyi%20and%20Gephyrocapsa%20oceanica%20(Haptophyta)&rft.jtitle=Journal%20of%20phycology&rft.au=Bendif%20,%20El%20Mahdi&rft.date=2014-02&rft.volume=50&rft.issue=1&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0022-3646&rft.eissn=1529-8817&rft_id=info:doi/10.1111/jpy.12147&rft_dat=%3Cproquest_hal_p%3E1774529218%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498126101&rft_id=info:pmid/26988015&rfr_iscdi=true