Modeling the continuous lactic acid production process from wheat flour
A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fi...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-01, Vol.100 (1), p.147-159 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Gonzalez, Karen Tebbani, Sihem Lopes, Filipa Thorigné, Aurore Givry, Sébastien Dumur, Didier Pareau, Dominique |
description | A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity. |
doi_str_mv | 10.1007/s00253-015-6949-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01256880v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442810668</galeid><sourcerecordid>A442810668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c671t-6fc8b79c8543542a7532c871d6603821dba3c20b2df9c04f6df9dffbd69e714e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhB3CBSFzoIWXGcWznuKqgrbQIidKz5Th21lUSlzjh49_jKKWwCCHkw9jj5x35HQ8hzxFOEUC8iQC0LHLAMucVq3LxgGyQFTQHjuwh2QCKMhdlJY_IkxhvAJBKzh-TI8qLqmJIN-T8fWhs54c2m_Y2M2GY_DCHOWadNpM3mTa-yW7H0MzpGIZla2yMmRtDn33dWz1lrgvz-JQ8crqL9tldPCbX795-OrvIdx_OL8-2u9xwgVPOnZG1qIwsWVEyqkVZUCMFNpxDISk2tS4MhZo2rjLAHE-xca5ueGUFMlsck5O17l536nb0vR6_q6C9utju1JJLHksuJXzBxL5e2fToz7ONk-p9NLbr9GCTRYWC00IgVPAfaMmgokzyhL76A71J_odkeqEKlAwZ_KJa3VnlBxemUZulqNoyRiUC5zJRp3-h0mps79NnWOdT_kBwciBYPsx-m1o9x6gurz4esriyZgwxjtbd9wtBLfOj1vlJLSvVMj9KJM2LO3Nz3dvmXvFzYBJAVyCmq6G142_u_1H15SpyOijdjj6q6ysKyAGAIU_9_wGoMdRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753184140</pqid></control><display><type>article</type><title>Modeling the continuous lactic acid production process from wheat flour</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gonzalez, Karen ; Tebbani, Sihem ; Lopes, Filipa ; Thorigné, Aurore ; Givry, Sébastien ; Dumur, Didier ; Pareau, Dominique</creator><creatorcontrib>Gonzalez, Karen ; Tebbani, Sihem ; Lopes, Filipa ; Thorigné, Aurore ; Givry, Sébastien ; Dumur, Didier ; Pareau, Dominique</creatorcontrib><description>A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6949-7</identifier><identifier>PMID: 26399412</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Agricultural biotechnology ; Amino acids ; Automatic ; Bacteria ; biomass ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; Chemical and Process Engineering ; Chemical properties ; Chemical reactions ; Crop production ; Engineering Sciences ; Enzymes ; Experiments ; Fermentation ; Flour ; Glucose ; Hydrolysis ; Identification and classification ; Kinetics ; Lactic acid ; Lactic Acid - metabolism ; Lactobacillus - growth & development ; Lactobacillus - metabolism ; Life Sciences ; maltose ; Maltose - metabolism ; Microbial Genetics and Genomics ; microbial growth ; Microbiology ; Models, Theoretical ; Observations ; Process engineering ; Productivity ; Proteins ; saccharification ; Studies ; Triticum - metabolism ; Triticum aestivum ; Wheat ; wheat flour ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2016-01, Vol.100 (1), p.147-159</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c671t-6fc8b79c8543542a7532c871d6603821dba3c20b2df9c04f6df9dffbd69e714e3</citedby><cites>FETCH-LOGICAL-c671t-6fc8b79c8543542a7532c871d6603821dba3c20b2df9c04f6df9dffbd69e714e3</cites><orcidid>0000-0003-0388-2902 ; 0000-0002-0474-5080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-6949-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-6949-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26399412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-01256880$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez, Karen</creatorcontrib><creatorcontrib>Tebbani, Sihem</creatorcontrib><creatorcontrib>Lopes, Filipa</creatorcontrib><creatorcontrib>Thorigné, Aurore</creatorcontrib><creatorcontrib>Givry, Sébastien</creatorcontrib><creatorcontrib>Dumur, Didier</creatorcontrib><creatorcontrib>Pareau, Dominique</creatorcontrib><title>Modeling the continuous lactic acid production process from wheat flour</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.</description><subject>Acid production</subject><subject>Agricultural biotechnology</subject><subject>Amino acids</subject><subject>Automatic</subject><subject>Bacteria</subject><subject>biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Chemical and Process Engineering</subject><subject>Chemical properties</subject><subject>Chemical reactions</subject><subject>Crop production</subject><subject>Engineering Sciences</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Fermentation</subject><subject>Flour</subject><subject>Glucose</subject><subject>Hydrolysis</subject><subject>Identification and classification</subject><subject>Kinetics</subject><subject>Lactic acid</subject><subject>Lactic Acid - metabolism</subject><subject>Lactobacillus - growth & development</subject><subject>Lactobacillus - metabolism</subject><subject>Life Sciences</subject><subject>maltose</subject><subject>Maltose - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>microbial growth</subject><subject>Microbiology</subject><subject>Models, Theoretical</subject><subject>Observations</subject><subject>Process engineering</subject><subject>Productivity</subject><subject>Proteins</subject><subject>saccharification</subject><subject>Studies</subject><subject>Triticum - metabolism</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>wheat flour</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1v1DAQhi0EokvhB3CBSFzoIWXGcWznuKqgrbQIidKz5Th21lUSlzjh49_jKKWwCCHkw9jj5x35HQ8hzxFOEUC8iQC0LHLAMucVq3LxgGyQFTQHjuwh2QCKMhdlJY_IkxhvAJBKzh-TI8qLqmJIN-T8fWhs54c2m_Y2M2GY_DCHOWadNpM3mTa-yW7H0MzpGIZla2yMmRtDn33dWz1lrgvz-JQ8crqL9tldPCbX795-OrvIdx_OL8-2u9xwgVPOnZG1qIwsWVEyqkVZUCMFNpxDISk2tS4MhZo2rjLAHE-xca5ueGUFMlsck5O17l536nb0vR6_q6C9utju1JJLHksuJXzBxL5e2fToz7ONk-p9NLbr9GCTRYWC00IgVPAfaMmgokzyhL76A71J_odkeqEKlAwZ_KJa3VnlBxemUZulqNoyRiUC5zJRp3-h0mps79NnWOdT_kBwciBYPsx-m1o9x6gurz4esriyZgwxjtbd9wtBLfOj1vlJLSvVMj9KJM2LO3Nz3dvmXvFzYBJAVyCmq6G142_u_1H15SpyOijdjj6q6ysKyAGAIU_9_wGoMdRU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Gonzalez, Karen</creator><creator>Tebbani, Sihem</creator><creator>Lopes, Filipa</creator><creator>Thorigné, Aurore</creator><creator>Givry, Sébastien</creator><creator>Dumur, Didier</creator><creator>Pareau, Dominique</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0388-2902</orcidid><orcidid>https://orcid.org/0000-0002-0474-5080</orcidid></search><sort><creationdate>20160101</creationdate><title>Modeling the continuous lactic acid production process from wheat flour</title><author>Gonzalez, Karen ; Tebbani, Sihem ; Lopes, Filipa ; Thorigné, Aurore ; Givry, Sébastien ; Dumur, Didier ; Pareau, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c671t-6fc8b79c8543542a7532c871d6603821dba3c20b2df9c04f6df9dffbd69e714e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acid production</topic><topic>Agricultural biotechnology</topic><topic>Amino acids</topic><topic>Automatic</topic><topic>Bacteria</topic><topic>biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Chemical and Process Engineering</topic><topic>Chemical properties</topic><topic>Chemical reactions</topic><topic>Crop production</topic><topic>Engineering Sciences</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Fermentation</topic><topic>Flour</topic><topic>Glucose</topic><topic>Hydrolysis</topic><topic>Identification and classification</topic><topic>Kinetics</topic><topic>Lactic acid</topic><topic>Lactic Acid - metabolism</topic><topic>Lactobacillus - growth & development</topic><topic>Lactobacillus - metabolism</topic><topic>Life Sciences</topic><topic>maltose</topic><topic>Maltose - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>microbial growth</topic><topic>Microbiology</topic><topic>Models, Theoretical</topic><topic>Observations</topic><topic>Process engineering</topic><topic>Productivity</topic><topic>Proteins</topic><topic>saccharification</topic><topic>Studies</topic><topic>Triticum - metabolism</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>wheat flour</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Karen</creatorcontrib><creatorcontrib>Tebbani, Sihem</creatorcontrib><creatorcontrib>Lopes, Filipa</creatorcontrib><creatorcontrib>Thorigné, Aurore</creatorcontrib><creatorcontrib>Givry, Sébastien</creatorcontrib><creatorcontrib>Dumur, Didier</creatorcontrib><creatorcontrib>Pareau, Dominique</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Karen</au><au>Tebbani, Sihem</au><au>Lopes, Filipa</au><au>Thorigné, Aurore</au><au>Givry, Sébastien</au><au>Dumur, Didier</au><au>Pareau, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the continuous lactic acid production process from wheat flour</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>100</volume><issue>1</issue><spage>147</spage><epage>159</epage><pages>147-159</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>A kinetic model of the simultaneous saccharification, protein hydrolysis, and fermentation (SSPHF) process for lactic acid production from wheat flour has been developed. The model describes the bacterial growth, substrate consumption, lactic acid production, and maltose hydrolysis. The model was fitted and validated with data from SSPHF experiments obtained under different dilution rates. The results of the model are in good agreement with the experimental data. Steady state concentrations of biomass, lactic acid, glucose, and maltose as function of the dilution rate were predicted by the model. This steady state analysis is further useful to determine the operating conditions that maximize lactic acid productivity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26399412</pmid><doi>10.1007/s00253-015-6949-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0388-2902</orcidid><orcidid>https://orcid.org/0000-0002-0474-5080</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-01, Vol.100 (1), p.147-159 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01256880v1 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Acid production Agricultural biotechnology Amino acids Automatic Bacteria biomass Biomedical and Life Sciences Biosynthesis Biotechnological Products and Process Engineering Biotechnology Chemical and Process Engineering Chemical properties Chemical reactions Crop production Engineering Sciences Enzymes Experiments Fermentation Flour Glucose Hydrolysis Identification and classification Kinetics Lactic acid Lactic Acid - metabolism Lactobacillus - growth & development Lactobacillus - metabolism Life Sciences maltose Maltose - metabolism Microbial Genetics and Genomics microbial growth Microbiology Models, Theoretical Observations Process engineering Productivity Proteins saccharification Studies Triticum - metabolism Triticum aestivum Wheat wheat flour Yeast |
title | Modeling the continuous lactic acid production process from wheat flour |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20continuous%20lactic%20acid%20production%20process%20from%20wheat%20flour&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Gonzalez,%20Karen&rft.date=2016-01-01&rft.volume=100&rft.issue=1&rft.spage=147&rft.epage=159&rft.pages=147-159&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6949-7&rft_dat=%3Cgale_hal_p%3EA442810668%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753184140&rft_id=info:pmid/26399412&rft_galeid=A442810668&rfr_iscdi=true |