Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited
In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rende...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-08, Vol.777 (R2), Article R2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | R2 |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 777 |
creator | Rajchenbach, Jean Clamond, Didier |
description | In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth. |
doi_str_mv | 10.1017/jfm.2015.382 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01254383v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_382</cupid><sourcerecordid>3861347381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</originalsourceid><addsrcrecordid>eNptkE9Lw0AQxRdRsFZvfoAFT4KJs5v_3kqxVih40fMy2czaLW1Sd5NKv71pU8SDpxkev_d4PMZuBYQCRPa4MptQgkjCKJdnbCTitAiyNE7O2QhAykAICZfsyvsVgIigyEasnKHDCvf8G3fkn3i7JOt4Zf2WnLdNzR2tse2fB15j2znijeGlNZ3TR5ljXR29dbcpyXFPa9LtYNxZb1uqrtmFwbWnm9Mds4_Z8_t0HizeXl6nk0Wgoyxug1RDRpDEcV-n1Do3BozMUBQi1ZEGEyNqKgghy9MygbSiROdpXJhCFmQAozG7H3KXuFZbZzfo9qpBq-aThTpoIGQSR3m0Ez17N7Bb13x15Fu1ajpX9_WUyCIJSZrk0FMPA6Vd470j8xsrQB0WV_3i6rC46hfv8fCE46Z0tvqkP6n_GX4AhnWENg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732056580</pqid></control><display><type>article</type><title>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</title><source>Cambridge University Press Journals Complete</source><creator>Rajchenbach, Jean ; Clamond, Didier</creator><creatorcontrib>Rajchenbach, Jean ; Clamond, Didier</creatorcontrib><description>In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.382</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid dynamics ; Fluid mechanics ; Mechanics ; Physics ; Rapids</subject><ispartof>Journal of fluid mechanics, 2015-08, Vol.777 (R2), Article R2</ispartof><rights>2015 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</citedby><cites>FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</cites><orcidid>0000-0003-0543-8995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015003821/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01254383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajchenbach, Jean</creatorcontrib><creatorcontrib>Clamond, Didier</creatorcontrib><title>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.</description><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Rapids</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9Lw0AQxRdRsFZvfoAFT4KJs5v_3kqxVih40fMy2czaLW1Sd5NKv71pU8SDpxkev_d4PMZuBYQCRPa4MptQgkjCKJdnbCTitAiyNE7O2QhAykAICZfsyvsVgIigyEasnKHDCvf8G3fkn3i7JOt4Zf2WnLdNzR2tse2fB15j2znijeGlNZ3TR5ljXR29dbcpyXFPa9LtYNxZb1uqrtmFwbWnm9Mds4_Z8_t0HizeXl6nk0Wgoyxug1RDRpDEcV-n1Do3BozMUBQi1ZEGEyNqKgghy9MygbSiROdpXJhCFmQAozG7H3KXuFZbZzfo9qpBq-aThTpoIGQSR3m0Ez17N7Bb13x15Fu1ajpX9_WUyCIJSZrk0FMPA6Vd470j8xsrQB0WV_3i6rC46hfv8fCE46Z0tvqkP6n_GX4AhnWENg</recordid><startdate>20150825</startdate><enddate>20150825</enddate><creator>Rajchenbach, Jean</creator><creator>Clamond, Didier</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0543-8995</orcidid></search><sort><creationdate>20150825</creationdate><title>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</title><author>Rajchenbach, Jean ; Clamond, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Rapids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajchenbach, Jean</creatorcontrib><creatorcontrib>Clamond, Didier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajchenbach, Jean</au><au>Clamond, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-08-25</date><risdate>2015</risdate><volume>777</volume><issue>R2</issue><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.382</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0543-8995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2015-08, Vol.777 (R2), Article R2 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01254383v1 |
source | Cambridge University Press Journals Complete |
subjects | Fluid dynamics Fluid mechanics Mechanics Physics Rapids |
title | Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faraday%20waves:%20their%20dispersion%20relation,%20nature%20of%20bifurcation%20and%20wavenumber%20selection%20revisited&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rajchenbach,%20Jean&rft.date=2015-08-25&rft.volume=777&rft.issue=R2&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.382&rft_dat=%3Cproquest_hal_p%3E3861347381%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732056580&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_382&rfr_iscdi=true |