Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited

In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2015-08, Vol.777 (R2), Article R2
Hauptverfasser: Rajchenbach, Jean, Clamond, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue R2
container_start_page
container_title Journal of fluid mechanics
container_volume 777
creator Rajchenbach, Jean
Clamond, Didier
description In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.
doi_str_mv 10.1017/jfm.2015.382
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01254383v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_382</cupid><sourcerecordid>3861347381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</originalsourceid><addsrcrecordid>eNptkE9Lw0AQxRdRsFZvfoAFT4KJs5v_3kqxVih40fMy2czaLW1Sd5NKv71pU8SDpxkev_d4PMZuBYQCRPa4MptQgkjCKJdnbCTitAiyNE7O2QhAykAICZfsyvsVgIigyEasnKHDCvf8G3fkn3i7JOt4Zf2WnLdNzR2tse2fB15j2znijeGlNZ3TR5ljXR29dbcpyXFPa9LtYNxZb1uqrtmFwbWnm9Mds4_Z8_t0HizeXl6nk0Wgoyxug1RDRpDEcV-n1Do3BozMUBQi1ZEGEyNqKgghy9MygbSiROdpXJhCFmQAozG7H3KXuFZbZzfo9qpBq-aThTpoIGQSR3m0Ez17N7Bb13x15Fu1ajpX9_WUyCIJSZrk0FMPA6Vd470j8xsrQB0WV_3i6rC46hfv8fCE46Z0tvqkP6n_GX4AhnWENg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732056580</pqid></control><display><type>article</type><title>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</title><source>Cambridge University Press Journals Complete</source><creator>Rajchenbach, Jean ; Clamond, Didier</creator><creatorcontrib>Rajchenbach, Jean ; Clamond, Didier</creatorcontrib><description>In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.382</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid dynamics ; Fluid mechanics ; Mechanics ; Physics ; Rapids</subject><ispartof>Journal of fluid mechanics, 2015-08, Vol.777 (R2), Article R2</ispartof><rights>2015 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</citedby><cites>FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</cites><orcidid>0000-0003-0543-8995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015003821/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01254383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajchenbach, Jean</creatorcontrib><creatorcontrib>Clamond, Didier</creatorcontrib><title>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.</description><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Rapids</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE9Lw0AQxRdRsFZvfoAFT4KJs5v_3kqxVih40fMy2czaLW1Sd5NKv71pU8SDpxkev_d4PMZuBYQCRPa4MptQgkjCKJdnbCTitAiyNE7O2QhAykAICZfsyvsVgIigyEasnKHDCvf8G3fkn3i7JOt4Zf2WnLdNzR2tse2fB15j2znijeGlNZ3TR5ljXR29dbcpyXFPa9LtYNxZb1uqrtmFwbWnm9Mds4_Z8_t0HizeXl6nk0Wgoyxug1RDRpDEcV-n1Do3BozMUBQi1ZEGEyNqKgghy9MygbSiROdpXJhCFmQAozG7H3KXuFZbZzfo9qpBq-aThTpoIGQSR3m0Ez17N7Bb13x15Fu1ajpX9_WUyCIJSZrk0FMPA6Vd470j8xsrQB0WV_3i6rC46hfv8fCE46Z0tvqkP6n_GX4AhnWENg</recordid><startdate>20150825</startdate><enddate>20150825</enddate><creator>Rajchenbach, Jean</creator><creator>Clamond, Didier</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0543-8995</orcidid></search><sort><creationdate>20150825</creationdate><title>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</title><author>Rajchenbach, Jean ; Clamond, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-6c07e0544adabcc8ff0f27a1916c3c0f4aace9ea0786b506de5c8649f929ef0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Rapids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajchenbach, Jean</creatorcontrib><creatorcontrib>Clamond, Didier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajchenbach, Jean</au><au>Clamond, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-08-25</date><risdate>2015</risdate><volume>777</volume><issue>R2</issue><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>In the current literature, the dispersion relation of parametrically forced surface waves is often identified with that of free unforced waves. We revisit here the theoretical description of Faraday waves, showing that forcing and dissipation play a significant role in the dispersion relation, rendering it bi-valued. We then determine the instability thresholds and the wavenumber selection in cases of both short and long waves. We show that the bifurcation can be either supercritical or subcritical, depending on the depth.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.382</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0543-8995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2015-08, Vol.777 (R2), Article R2
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_01254383v1
source Cambridge University Press Journals Complete
subjects Fluid dynamics
Fluid mechanics
Mechanics
Physics
Rapids
title Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faraday%20waves:%20their%20dispersion%20relation,%20nature%20of%20bifurcation%20and%20wavenumber%20selection%20revisited&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Rajchenbach,%20Jean&rft.date=2015-08-25&rft.volume=777&rft.issue=R2&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.382&rft_dat=%3Cproquest_hal_p%3E3861347381%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732056580&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_382&rfr_iscdi=true