Beyond support in two-stage variable selection
Numerous variable selection methods rely on a two-stage procedure, where a sparsity-inducing penalty is used in the first stage to predict the support, which is then conveyed to the second stage for estimation or inference purposes. In this framework, the first stage screens variables to find a set...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2017, Vol.27 (1), p.169-179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 1 |
container_start_page | 169 |
container_title | Statistics and computing |
container_volume | 27 |
creator | Bécu, Jean-Michel Grandvalet, Yves Ambroise, Christophe Dalmasso, Cyril |
description | Numerous variable selection methods rely on a two-stage procedure, where a sparsity-inducing penalty is used in the first stage to predict the support, which is then conveyed to the second stage for estimation or inference purposes. In this framework, the first stage screens variables to find a set of possibly relevant variables and the second stage operates on this set of candidate variables, to improve estimation accuracy or to assess the uncertainty associated to the selection of variables. We advocate that more information can be conveyed from the first stage to the second one: we use the magnitude of the coefficients estimated in the first stage to define an adaptive penalty that is applied at the second stage. We give the example of an inference procedure that highly benefits from the proposed transfer of information. The procedure is precisely analyzed in a simple setting, and our large-scale experiments empirically demonstrate that actual benefits can be expected in much more general situations, with sensitivity gains ranging from 50 to 100 % compared to state-of-the-art. |
doi_str_mv | 10.1007/s11222-015-9614-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01246066v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880796554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8f4041d9c38161c59881df1c21764bae1d641655fd3202b15e297cddbdcddc953</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FTx6yZvLV5rgu6goLXvQc0iRdu9SmJt2V_fe2VMSLlxkYnnlmeBG6BrIAQvK7BEApxQQEVhI4hhM0A5EzDCwXp2hGlCSYQc7P0UVKO0IAJOMztLj3x9C6LO27LsQ-q9us_wo49Wbrs4OJtSkbnyXfeNvXob1EZ5Vpkr_66XP09vjwulrjzcvT82q5wZYp1uOi4oSDU5YVIMEKVRTgKrAUcslL48FJDlKIyjFKaAnCU5Vb50o3FKsEm6PbyftuGt3F-sPEow6m1uvlRo8zApRLIuUBBvZmYrsYPvc-9XoX9rEd3tNQFCRXwyE-UDBRNoaUoq9-tUD0GKGeIhzMQo8R6tFMp500sO3Wxz_mf5e-AYLpcVM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880796554</pqid></control><display><type>article</type><title>Beyond support in two-stage variable selection</title><source>SpringerLink</source><creator>Bécu, Jean-Michel ; Grandvalet, Yves ; Ambroise, Christophe ; Dalmasso, Cyril</creator><creatorcontrib>Bécu, Jean-Michel ; Grandvalet, Yves ; Ambroise, Christophe ; Dalmasso, Cyril</creatorcontrib><description>Numerous variable selection methods rely on a two-stage procedure, where a sparsity-inducing penalty is used in the first stage to predict the support, which is then conveyed to the second stage for estimation or inference purposes. In this framework, the first stage screens variables to find a set of possibly relevant variables and the second stage operates on this set of candidate variables, to improve estimation accuracy or to assess the uncertainty associated to the selection of variables. We advocate that more information can be conveyed from the first stage to the second one: we use the magnitude of the coefficients estimated in the first stage to define an adaptive penalty that is applied at the second stage. We give the example of an inference procedure that highly benefits from the proposed transfer of information. The procedure is precisely analyzed in a simple setting, and our large-scale experiments empirically demonstrate that actual benefits can be expected in much more general situations, with sensitivity gains ranging from 50 to 100 % compared to state-of-the-art.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-015-9614-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Inference ; Machine Learning ; Mathematics and Statistics ; Methodology ; Probability and Statistics in Computer Science ; Screens ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Variables</subject><ispartof>Statistics and computing, 2017, Vol.27 (1), p.169-179</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8f4041d9c38161c59881df1c21764bae1d641655fd3202b15e297cddbdcddc953</citedby><cites>FETCH-LOGICAL-c393t-8f4041d9c38161c59881df1c21764bae1d641655fd3202b15e297cddbdcddc953</cites><orcidid>0000-0001-6882-1946 ; 0000-0002-8148-0346 ; 0000-0002-5645-5149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-015-9614-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-015-9614-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4022,27922,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01246066$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bécu, Jean-Michel</creatorcontrib><creatorcontrib>Grandvalet, Yves</creatorcontrib><creatorcontrib>Ambroise, Christophe</creatorcontrib><creatorcontrib>Dalmasso, Cyril</creatorcontrib><title>Beyond support in two-stage variable selection</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Numerous variable selection methods rely on a two-stage procedure, where a sparsity-inducing penalty is used in the first stage to predict the support, which is then conveyed to the second stage for estimation or inference purposes. In this framework, the first stage screens variables to find a set of possibly relevant variables and the second stage operates on this set of candidate variables, to improve estimation accuracy or to assess the uncertainty associated to the selection of variables. We advocate that more information can be conveyed from the first stage to the second one: we use the magnitude of the coefficients estimated in the first stage to define an adaptive penalty that is applied at the second stage. We give the example of an inference procedure that highly benefits from the proposed transfer of information. The procedure is precisely analyzed in a simple setting, and our large-scale experiments empirically demonstrate that actual benefits can be expected in much more general situations, with sensitivity gains ranging from 50 to 100 % compared to state-of-the-art.</description><subject>Artificial Intelligence</subject><subject>Inference</subject><subject>Machine Learning</subject><subject>Mathematics and Statistics</subject><subject>Methodology</subject><subject>Probability and Statistics in Computer Science</subject><subject>Screens</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Variables</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8FTx6yZvLV5rgu6goLXvQc0iRdu9SmJt2V_fe2VMSLlxkYnnlmeBG6BrIAQvK7BEApxQQEVhI4hhM0A5EzDCwXp2hGlCSYQc7P0UVKO0IAJOMztLj3x9C6LO27LsQ-q9us_wo49Wbrs4OJtSkbnyXfeNvXob1EZ5Vpkr_66XP09vjwulrjzcvT82q5wZYp1uOi4oSDU5YVIMEKVRTgKrAUcslL48FJDlKIyjFKaAnCU5Vb50o3FKsEm6PbyftuGt3F-sPEow6m1uvlRo8zApRLIuUBBvZmYrsYPvc-9XoX9rEd3tNQFCRXwyE-UDBRNoaUoq9-tUD0GKGeIhzMQo8R6tFMp500sO3Wxz_mf5e-AYLpcVM</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bécu, Jean-Michel</creator><creator>Grandvalet, Yves</creator><creator>Ambroise, Christophe</creator><creator>Dalmasso, Cyril</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6882-1946</orcidid><orcidid>https://orcid.org/0000-0002-8148-0346</orcidid><orcidid>https://orcid.org/0000-0002-5645-5149</orcidid></search><sort><creationdate>2017</creationdate><title>Beyond support in two-stage variable selection</title><author>Bécu, Jean-Michel ; Grandvalet, Yves ; Ambroise, Christophe ; Dalmasso, Cyril</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8f4041d9c38161c59881df1c21764bae1d641655fd3202b15e297cddbdcddc953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Inference</topic><topic>Machine Learning</topic><topic>Mathematics and Statistics</topic><topic>Methodology</topic><topic>Probability and Statistics in Computer Science</topic><topic>Screens</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bécu, Jean-Michel</creatorcontrib><creatorcontrib>Grandvalet, Yves</creatorcontrib><creatorcontrib>Ambroise, Christophe</creatorcontrib><creatorcontrib>Dalmasso, Cyril</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bécu, Jean-Michel</au><au>Grandvalet, Yves</au><au>Ambroise, Christophe</au><au>Dalmasso, Cyril</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond support in two-stage variable selection</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2017</date><risdate>2017</risdate><volume>27</volume><issue>1</issue><spage>169</spage><epage>179</epage><pages>169-179</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Numerous variable selection methods rely on a two-stage procedure, where a sparsity-inducing penalty is used in the first stage to predict the support, which is then conveyed to the second stage for estimation or inference purposes. In this framework, the first stage screens variables to find a set of possibly relevant variables and the second stage operates on this set of candidate variables, to improve estimation accuracy or to assess the uncertainty associated to the selection of variables. We advocate that more information can be conveyed from the first stage to the second one: we use the magnitude of the coefficients estimated in the first stage to define an adaptive penalty that is applied at the second stage. We give the example of an inference procedure that highly benefits from the proposed transfer of information. The procedure is precisely analyzed in a simple setting, and our large-scale experiments empirically demonstrate that actual benefits can be expected in much more general situations, with sensitivity gains ranging from 50 to 100 % compared to state-of-the-art.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-015-9614-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6882-1946</orcidid><orcidid>https://orcid.org/0000-0002-8148-0346</orcidid><orcidid>https://orcid.org/0000-0002-5645-5149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2017, Vol.27 (1), p.169-179 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01246066v1 |
source | SpringerLink |
subjects | Artificial Intelligence Inference Machine Learning Mathematics and Statistics Methodology Probability and Statistics in Computer Science Screens Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Variables |
title | Beyond support in two-stage variable selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20support%20in%20two-stage%20variable%20selection&rft.jtitle=Statistics%20and%20computing&rft.au=B%C3%A9cu,%20Jean-Michel&rft.date=2017&rft.volume=27&rft.issue=1&rft.spage=169&rft.epage=179&rft.pages=169-179&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-015-9614-1&rft_dat=%3Cproquest_hal_p%3E1880796554%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880796554&rft_id=info:pmid/&rfr_iscdi=true |