Experimental evidence that a high electric field acts as an efficient external parameter during crystalline growth of bulk oxide
A new crystal growth device, in which a high static external electric voltage (up to 14kV) is added to a floating zone method, is described. Our first experiments show that the application of such an electric field acts like an external force, introducing a pressure effect which is in direct competi...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2015-01, Vol.409, p.23-26 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 23 |
container_title | Journal of crystal growth |
container_volume | 409 |
creator | Hicher, P. Haumont, R. Saint-Martin, R. Mininger, X. Berthet, P. Revcolevschi, A. |
description | A new crystal growth device, in which a high static external electric voltage (up to 14kV) is added to a floating zone method, is described. Our first experiments show that the application of such an electric field acts like an external force, introducing a pressure effect which is in direct competition with temperature in the solid/liquid thermodynamic equilibrium. High electric fields could therefore be an additional parameter in crystal growth, opening original routes to the synthesis of new materials.
•A floating zone furnace was equipped with a high static external electric voltage (up to 14kV).•A high electric field strongly affects the liquid–solid ration during the growth.•An electric field is in competition with the temperature in the solid–liquid thermodynamic equilibrium.•Electric field and gas pressure parameters are discussed on the stability of solid–liquid equilibrium. |
doi_str_mv | 10.1016/j.jcrysgro.2014.09.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01244837v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024814006599</els_id><sourcerecordid>1651422503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6aae7b55b4be2c3b3f2b9a68564bf565326ca33b0a3538969b1d37572978126e3</originalsourceid><addsrcrecordid>eNqFUU1v0zAYthBIlLK_gHxBgkOCP2LHuTFNgyFV2mU7W2-cN42LmxQ7Ld2Nn46jjl2RLFu2no_Xz0PIB85Kzrj-sit3Lj6lbZxKwXhVsqZkUr4iK25qWSjGxGuyyrsomKjMW_IupR1jmcnZivy5PR8w-j2OMwSKJ9_h6JDOA8wU6OC3A8WAbo7e0d5j6Ci4OVHIa6TY9975TKV4njGOWeEAEfaYL7Q7Rj9u6TJalg5-RJpH_D0PdOppeww_6XTObu_Jmx5Cwqvnc00ev90-3NwVm_vvP26uN4WrVD0XGgDrVqm2alE42cpetA1oo3TV9korKbQDKVsGUknT6KblnaxVLZracKFRrsnni-4AwR7yjyE-2Qm8vbve2OWNcVFVRtYnnrGfLthDnH4dMc1275PDEGDE6Zgs14pXQqgc85roC9TFKaWI_Ys2Z3apx-7sv3rsUo9ljc28TPz47AHJQegjjM6nF7YwjTDc6Iz7esFhDufkMdq0RO6w8zH3YrvJ_8_qL2HBqnI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651422503</pqid></control><display><type>article</type><title>Experimental evidence that a high electric field acts as an efficient external parameter during crystalline growth of bulk oxide</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hicher, P. ; Haumont, R. ; Saint-Martin, R. ; Mininger, X. ; Berthet, P. ; Revcolevschi, A.</creator><creatorcontrib>Hicher, P. ; Haumont, R. ; Saint-Martin, R. ; Mininger, X. ; Berthet, P. ; Revcolevschi, A.</creatorcontrib><description>A new crystal growth device, in which a high static external electric voltage (up to 14kV) is added to a floating zone method, is described. Our first experiments show that the application of such an electric field acts like an external force, introducing a pressure effect which is in direct competition with temperature in the solid/liquid thermodynamic equilibrium. High electric fields could therefore be an additional parameter in crystal growth, opening original routes to the synthesis of new materials.
•A floating zone furnace was equipped with a high static external electric voltage (up to 14kV).•A high electric field strongly affects the liquid–solid ration during the growth.•An electric field is in competition with the temperature in the solid–liquid thermodynamic equilibrium.•Electric field and gas pressure parameters are discussed on the stability of solid–liquid equilibrium.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2014.09.033</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Electric field ; A1. Solidification ; A2. Floating zone technique ; B1. Oxides ; Chemical Sciences ; Cristallography ; Cross-disciplinary physics: materials science; rheology ; Crystal growth ; Crystal structure ; Electric fields ; Electric potential ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Liquids ; Materials science ; Methods of crystal growth; physics of crystal growth ; Oxides ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Solidification ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation ; Thermodynamic equilibrium ; Voltage</subject><ispartof>Journal of crystal growth, 2015-01, Vol.409, p.23-26</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6aae7b55b4be2c3b3f2b9a68564bf565326ca33b0a3538969b1d37572978126e3</citedby><cites>FETCH-LOGICAL-c457t-6aae7b55b4be2c3b3f2b9a68564bf565326ca33b0a3538969b1d37572978126e3</cites><orcidid>0000-0001-6440-9882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2014.09.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,4022,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928186$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-01244837$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hicher, P.</creatorcontrib><creatorcontrib>Haumont, R.</creatorcontrib><creatorcontrib>Saint-Martin, R.</creatorcontrib><creatorcontrib>Mininger, X.</creatorcontrib><creatorcontrib>Berthet, P.</creatorcontrib><creatorcontrib>Revcolevschi, A.</creatorcontrib><title>Experimental evidence that a high electric field acts as an efficient external parameter during crystalline growth of bulk oxide</title><title>Journal of crystal growth</title><description>A new crystal growth device, in which a high static external electric voltage (up to 14kV) is added to a floating zone method, is described. Our first experiments show that the application of such an electric field acts like an external force, introducing a pressure effect which is in direct competition with temperature in the solid/liquid thermodynamic equilibrium. High electric fields could therefore be an additional parameter in crystal growth, opening original routes to the synthesis of new materials.
•A floating zone furnace was equipped with a high static external electric voltage (up to 14kV).•A high electric field strongly affects the liquid–solid ration during the growth.•An electric field is in competition with the temperature in the solid–liquid thermodynamic equilibrium.•Electric field and gas pressure parameters are discussed on the stability of solid–liquid equilibrium.</description><subject>A1. Electric field</subject><subject>A1. Solidification</subject><subject>A2. Floating zone technique</subject><subject>B1. Oxides</subject><subject>Chemical Sciences</subject><subject>Cristallography</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal growth</subject><subject>Crystal structure</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Oxides</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Solidification</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><subject>Thermodynamic equilibrium</subject><subject>Voltage</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v0zAYthBIlLK_gHxBgkOCP2LHuTFNgyFV2mU7W2-cN42LmxQ7Ld2Nn46jjl2RLFu2no_Xz0PIB85Kzrj-sit3Lj6lbZxKwXhVsqZkUr4iK25qWSjGxGuyyrsomKjMW_IupR1jmcnZivy5PR8w-j2OMwSKJ9_h6JDOA8wU6OC3A8WAbo7e0d5j6Ci4OVHIa6TY9975TKV4njGOWeEAEfaYL7Q7Rj9u6TJalg5-RJpH_D0PdOppeww_6XTObu_Jmx5Cwqvnc00ev90-3NwVm_vvP26uN4WrVD0XGgDrVqm2alE42cpetA1oo3TV9korKbQDKVsGUknT6KblnaxVLZracKFRrsnni-4AwR7yjyE-2Qm8vbve2OWNcVFVRtYnnrGfLthDnH4dMc1275PDEGDE6Zgs14pXQqgc85roC9TFKaWI_Ys2Z3apx-7sv3rsUo9ljc28TPz47AHJQegjjM6nF7YwjTDc6Iz7esFhDufkMdq0RO6w8zH3YrvJ_8_qL2HBqnI</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Hicher, P.</creator><creator>Haumont, R.</creator><creator>Saint-Martin, R.</creator><creator>Mininger, X.</creator><creator>Berthet, P.</creator><creator>Revcolevschi, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6440-9882</orcidid></search><sort><creationdate>20150101</creationdate><title>Experimental evidence that a high electric field acts as an efficient external parameter during crystalline growth of bulk oxide</title><author>Hicher, P. ; Haumont, R. ; Saint-Martin, R. ; Mininger, X. ; Berthet, P. ; Revcolevschi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6aae7b55b4be2c3b3f2b9a68564bf565326ca33b0a3538969b1d37572978126e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>A1. Electric field</topic><topic>A1. Solidification</topic><topic>A2. Floating zone technique</topic><topic>B1. Oxides</topic><topic>Chemical Sciences</topic><topic>Cristallography</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal growth</topic><topic>Crystal structure</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Oxides</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Solidification</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><topic>Thermodynamic equilibrium</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hicher, P.</creatorcontrib><creatorcontrib>Haumont, R.</creatorcontrib><creatorcontrib>Saint-Martin, R.</creatorcontrib><creatorcontrib>Mininger, X.</creatorcontrib><creatorcontrib>Berthet, P.</creatorcontrib><creatorcontrib>Revcolevschi, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hicher, P.</au><au>Haumont, R.</au><au>Saint-Martin, R.</au><au>Mininger, X.</au><au>Berthet, P.</au><au>Revcolevschi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evidence that a high electric field acts as an efficient external parameter during crystalline growth of bulk oxide</atitle><jtitle>Journal of crystal growth</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>409</volume><spage>23</spage><epage>26</epage><pages>23-26</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>A new crystal growth device, in which a high static external electric voltage (up to 14kV) is added to a floating zone method, is described. Our first experiments show that the application of such an electric field acts like an external force, introducing a pressure effect which is in direct competition with temperature in the solid/liquid thermodynamic equilibrium. High electric fields could therefore be an additional parameter in crystal growth, opening original routes to the synthesis of new materials.
•A floating zone furnace was equipped with a high static external electric voltage (up to 14kV).•A high electric field strongly affects the liquid–solid ration during the growth.•An electric field is in competition with the temperature in the solid–liquid thermodynamic equilibrium.•Electric field and gas pressure parameters are discussed on the stability of solid–liquid equilibrium.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2014.09.033</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-6440-9882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2015-01, Vol.409, p.23-26 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01244837v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A1. Electric field A1. Solidification A2. Floating zone technique B1. Oxides Chemical Sciences Cristallography Cross-disciplinary physics: materials science rheology Crystal growth Crystal structure Electric fields Electric potential Exact sciences and technology Growth from melts zone melting and refining Liquids Materials science Methods of crystal growth physics of crystal growth Oxides Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Solidification Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation Thermodynamic equilibrium Voltage |
title | Experimental evidence that a high electric field acts as an efficient external parameter during crystalline growth of bulk oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evidence%20that%20a%20high%20electric%20field%20acts%20as%20an%20efficient%20external%20parameter%20during%20crystalline%20growth%20of%20bulk%20oxide&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Hicher,%20P.&rft.date=2015-01-01&rft.volume=409&rft.spage=23&rft.epage=26&rft.pages=23-26&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2014.09.033&rft_dat=%3Cproquest_hal_p%3E1651422503%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651422503&rft_id=info:pmid/&rft_els_id=S0022024814006599&rfr_iscdi=true |