Zinc oxide scaffolds on MgO nanocubes

Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2010-09, Vol.21 (35), p.355603-355603
Hauptverfasser: Stankic, Slavica, Sternig, Andreas, Finocchi, Fabio, Bernardi, Johannes, Diwald, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355603
container_issue 35
container_start_page 355603
container_title Nanotechnology
container_volume 21
creator Stankic, Slavica
Sternig, Andreas
Finocchi, Fabio
Bernardi, Johannes
Diwald, Oliver
description Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.
doi_str_mv 10.1088/0957-4484/21/35/355603
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01241548v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855700587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</originalsourceid><addsrcrecordid>eNqF0E9LwzAYBvAgipvTrzB6EfFQlzf_exyiTpjsohcvIUsTrXRNbVbRb29L5y4KQiCQ_N4n4UFoCvgKsFIznHGZMqbYjMCM8m5xgekBGgMVkApO1CEa79EIncT4hjGAInCMRgSLrHNqjM6fi8om4bPIXRKt8T6UeUxClTy8rJLKVMG2axdP0ZE3ZXRnu32Cnm5vHq8X6XJ1d389X6aWcbFNJVApOVjHiFTSc2c8UOss5NQSlVHisMu4oRJLZYXLmM8cX0vKhOTe0YxO0OWQ-2pKXTfFxjRfOphCL-ZL3Z9hIAw4Ux_Q2YvB1k14b13c6k0RrStLU7nQRq04lxhzJTspBmmbEGPj_D4asO7b1H1Rui9KE9CU66HNbnC6e6Jdb1y-H_uprwPpAIpQ72__DtN17jsPv_0_n_gGW0aIiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855700587</pqid></control><display><type>article</type><title>Zinc oxide scaffolds on MgO nanocubes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Stankic, Slavica ; Sternig, Andreas ; Finocchi, Fabio ; Bernardi, Johannes ; Diwald, Oliver</creator><creatorcontrib>Stankic, Slavica ; Sternig, Andreas ; Finocchi, Fabio ; Bernardi, Johannes ; Diwald, Oliver</creatorcontrib><description>Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/21/35/355603</identifier><identifier>PMID: 20693618</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Combustion ; Condensed Matter ; Magnesium ; Magnesium oxide ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Physics ; Segregations ; Zinc</subject><ispartof>Nanotechnology, 2010-09, Vol.21 (35), p.355603-355603</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</citedby><cites>FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</cites><orcidid>0000-0002-8711-9746 ; 0000-0002-7048-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/21/35/355603/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20693618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01241548$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stankic, Slavica</creatorcontrib><creatorcontrib>Sternig, Andreas</creatorcontrib><creatorcontrib>Finocchi, Fabio</creatorcontrib><creatorcontrib>Bernardi, Johannes</creatorcontrib><creatorcontrib>Diwald, Oliver</creatorcontrib><title>Zinc oxide scaffolds on MgO nanocubes</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.</description><subject>Combustion</subject><subject>Condensed Matter</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Segregations</subject><subject>Zinc</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0E9LwzAYBvAgipvTrzB6EfFQlzf_exyiTpjsohcvIUsTrXRNbVbRb29L5y4KQiCQ_N4n4UFoCvgKsFIznHGZMqbYjMCM8m5xgekBGgMVkApO1CEa79EIncT4hjGAInCMRgSLrHNqjM6fi8om4bPIXRKt8T6UeUxClTy8rJLKVMG2axdP0ZE3ZXRnu32Cnm5vHq8X6XJ1d389X6aWcbFNJVApOVjHiFTSc2c8UOss5NQSlVHisMu4oRJLZYXLmM8cX0vKhOTe0YxO0OWQ-2pKXTfFxjRfOphCL-ZL3Z9hIAw4Ux_Q2YvB1k14b13c6k0RrStLU7nQRq04lxhzJTspBmmbEGPj_D4asO7b1H1Rui9KE9CU66HNbnC6e6Jdb1y-H_uprwPpAIpQ72__DtN17jsPv_0_n_gGW0aIiA</recordid><startdate>20100903</startdate><enddate>20100903</enddate><creator>Stankic, Slavica</creator><creator>Sternig, Andreas</creator><creator>Finocchi, Fabio</creator><creator>Bernardi, Johannes</creator><creator>Diwald, Oliver</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8711-9746</orcidid><orcidid>https://orcid.org/0000-0002-7048-5029</orcidid></search><sort><creationdate>20100903</creationdate><title>Zinc oxide scaffolds on MgO nanocubes</title><author>Stankic, Slavica ; Sternig, Andreas ; Finocchi, Fabio ; Bernardi, Johannes ; Diwald, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combustion</topic><topic>Condensed Matter</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Segregations</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankic, Slavica</creatorcontrib><creatorcontrib>Sternig, Andreas</creatorcontrib><creatorcontrib>Finocchi, Fabio</creatorcontrib><creatorcontrib>Bernardi, Johannes</creatorcontrib><creatorcontrib>Diwald, Oliver</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stankic, Slavica</au><au>Sternig, Andreas</au><au>Finocchi, Fabio</au><au>Bernardi, Johannes</au><au>Diwald, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc oxide scaffolds on MgO nanocubes</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2010-09-03</date><risdate>2010</risdate><volume>21</volume><issue>35</issue><spage>355603</spage><epage>355603</epage><pages>355603-355603</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>20693618</pmid><doi>10.1088/0957-4484/21/35/355603</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8711-9746</orcidid><orcidid>https://orcid.org/0000-0002-7048-5029</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2010-09, Vol.21 (35), p.355603-355603
issn 0957-4484
1361-6528
language eng
recordid cdi_hal_primary_oai_HAL_hal_01241548v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Combustion
Condensed Matter
Magnesium
Magnesium oxide
Nanocomposites
Nanomaterials
Nanoparticles
Nanostructure
Physics
Segregations
Zinc
title Zinc oxide scaffolds on MgO nanocubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20oxide%20scaffolds%20on%20MgO%20nanocubes&rft.jtitle=Nanotechnology&rft.au=Stankic,%20Slavica&rft.date=2010-09-03&rft.volume=21&rft.issue=35&rft.spage=355603&rft.epage=355603&rft.pages=355603-355603&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/21/35/355603&rft_dat=%3Cproquest_hal_p%3E855700587%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855700587&rft_id=info:pmid/20693618&rfr_iscdi=true