Zinc oxide scaffolds on MgO nanocubes
Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2010-09, Vol.21 (35), p.355603-355603 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355603 |
---|---|
container_issue | 35 |
container_start_page | 355603 |
container_title | Nanotechnology |
container_volume | 21 |
creator | Stankic, Slavica Sternig, Andreas Finocchi, Fabio Bernardi, Johannes Diwald, Oliver |
description | Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles. |
doi_str_mv | 10.1088/0957-4484/21/35/355603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01241548v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855700587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</originalsourceid><addsrcrecordid>eNqF0E9LwzAYBvAgipvTrzB6EfFQlzf_exyiTpjsohcvIUsTrXRNbVbRb29L5y4KQiCQ_N4n4UFoCvgKsFIznHGZMqbYjMCM8m5xgekBGgMVkApO1CEa79EIncT4hjGAInCMRgSLrHNqjM6fi8om4bPIXRKt8T6UeUxClTy8rJLKVMG2axdP0ZE3ZXRnu32Cnm5vHq8X6XJ1d389X6aWcbFNJVApOVjHiFTSc2c8UOss5NQSlVHisMu4oRJLZYXLmM8cX0vKhOTe0YxO0OWQ-2pKXTfFxjRfOphCL-ZL3Z9hIAw4Ux_Q2YvB1k14b13c6k0RrStLU7nQRq04lxhzJTspBmmbEGPj_D4asO7b1H1Rui9KE9CU66HNbnC6e6Jdb1y-H_uprwPpAIpQ72__DtN17jsPv_0_n_gGW0aIiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855700587</pqid></control><display><type>article</type><title>Zinc oxide scaffolds on MgO nanocubes</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Stankic, Slavica ; Sternig, Andreas ; Finocchi, Fabio ; Bernardi, Johannes ; Diwald, Oliver</creator><creatorcontrib>Stankic, Slavica ; Sternig, Andreas ; Finocchi, Fabio ; Bernardi, Johannes ; Diwald, Oliver</creatorcontrib><description>Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/21/35/355603</identifier><identifier>PMID: 20693618</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Combustion ; Condensed Matter ; Magnesium ; Magnesium oxide ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanostructure ; Physics ; Segregations ; Zinc</subject><ispartof>Nanotechnology, 2010-09, Vol.21 (35), p.355603-355603</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</citedby><cites>FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</cites><orcidid>0000-0002-8711-9746 ; 0000-0002-7048-5029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/21/35/355603/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,315,781,785,886,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20693618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01241548$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stankic, Slavica</creatorcontrib><creatorcontrib>Sternig, Andreas</creatorcontrib><creatorcontrib>Finocchi, Fabio</creatorcontrib><creatorcontrib>Bernardi, Johannes</creatorcontrib><creatorcontrib>Diwald, Oliver</creatorcontrib><title>Zinc oxide scaffolds on MgO nanocubes</title><title>Nanotechnology</title><addtitle>Nanotechnology</addtitle><description>Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.</description><subject>Combustion</subject><subject>Condensed Matter</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Segregations</subject><subject>Zinc</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0E9LwzAYBvAgipvTrzB6EfFQlzf_exyiTpjsohcvIUsTrXRNbVbRb29L5y4KQiCQ_N4n4UFoCvgKsFIznHGZMqbYjMCM8m5xgekBGgMVkApO1CEa79EIncT4hjGAInCMRgSLrHNqjM6fi8om4bPIXRKt8T6UeUxClTy8rJLKVMG2axdP0ZE3ZXRnu32Cnm5vHq8X6XJ1d389X6aWcbFNJVApOVjHiFTSc2c8UOss5NQSlVHisMu4oRJLZYXLmM8cX0vKhOTe0YxO0OWQ-2pKXTfFxjRfOphCL-ZL3Z9hIAw4Ux_Q2YvB1k14b13c6k0RrStLU7nQRq04lxhzJTspBmmbEGPj_D4asO7b1H1Rui9KE9CU66HNbnC6e6Jdb1y-H_uprwPpAIpQ72__DtN17jsPv_0_n_gGW0aIiA</recordid><startdate>20100903</startdate><enddate>20100903</enddate><creator>Stankic, Slavica</creator><creator>Sternig, Andreas</creator><creator>Finocchi, Fabio</creator><creator>Bernardi, Johannes</creator><creator>Diwald, Oliver</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8711-9746</orcidid><orcidid>https://orcid.org/0000-0002-7048-5029</orcidid></search><sort><creationdate>20100903</creationdate><title>Zinc oxide scaffolds on MgO nanocubes</title><author>Stankic, Slavica ; Sternig, Andreas ; Finocchi, Fabio ; Bernardi, Johannes ; Diwald, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7137751ce42787f5eaf13cec1d3c28932e0e95a37078c6e94f9e5b734675fe393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combustion</topic><topic>Condensed Matter</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Segregations</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stankic, Slavica</creatorcontrib><creatorcontrib>Sternig, Andreas</creatorcontrib><creatorcontrib>Finocchi, Fabio</creatorcontrib><creatorcontrib>Bernardi, Johannes</creatorcontrib><creatorcontrib>Diwald, Oliver</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stankic, Slavica</au><au>Sternig, Andreas</au><au>Finocchi, Fabio</au><au>Bernardi, Johannes</au><au>Diwald, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc oxide scaffolds on MgO nanocubes</atitle><jtitle>Nanotechnology</jtitle><addtitle>Nanotechnology</addtitle><date>2010-09-03</date><risdate>2010</risdate><volume>21</volume><issue>35</issue><spage>355603</spage><epage>355603</epage><pages>355603-355603</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><abstract>Powders of isolated and well-dispersed oxide nanocubes are promising components for photoelectronic applications that benefit from tunable optical properties, surface reactivity and the ease of realization of their controlled assembly. Here, we demonstrate that combustion of zinc and magnesium metal vapors at reduced pressures followed by subsequent vacuum annealing of the resulting nanoparticle powders yields single-crystalline Zn(x)Mg(1-x)O nanocubes of exceptional regular cubic shape and edge lengths below 25 nm. In line with ab initio calculations, which predict preferential Zn(2+) segregation into low coordinated surface elements of the MgO nanocubes, we track the occupation of edge sites by chains of Zn(2+)-O(2-) units through their spectroscopic signatures. As a method to generate composite nanostructures with controlled spatial distribution of the chemical components, the annealing induced ion segregation can be extended to other well-dispersed metastable nanoparticles. We expect that the energy of segregation mainly depends on the site coordination number, which can promote controlled demixing within the nanoparticles.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>20693618</pmid><doi>10.1088/0957-4484/21/35/355603</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8711-9746</orcidid><orcidid>https://orcid.org/0000-0002-7048-5029</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2010-09, Vol.21 (35), p.355603-355603 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01241548v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Combustion Condensed Matter Magnesium Magnesium oxide Nanocomposites Nanomaterials Nanoparticles Nanostructure Physics Segregations Zinc |
title | Zinc oxide scaffolds on MgO nanocubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20oxide%20scaffolds%20on%20MgO%20nanocubes&rft.jtitle=Nanotechnology&rft.au=Stankic,%20Slavica&rft.date=2010-09-03&rft.volume=21&rft.issue=35&rft.spage=355603&rft.epage=355603&rft.pages=355603-355603&rft.issn=0957-4484&rft.eissn=1361-6528&rft_id=info:doi/10.1088/0957-4484/21/35/355603&rft_dat=%3Cproquest_hal_p%3E855700587%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855700587&rft_id=info:pmid/20693618&rfr_iscdi=true |