Kernel Generalized Canonical Correlation Analysis
There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Genera...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2015-10, Vol.90 (C), p.114-131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | C |
container_start_page | 114 |
container_title | Computational statistics & data analysis |
container_volume | 90 |
creator | Tenenhaus, Arthur Philippe, Cathy Frouin, Vincent |
description | There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma.
KGCCA is available on CRAN as part of the RGCCA package. |
doi_str_mv | 10.1016/j.csda.2015.04.004 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01238943v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947315001012</els_id><sourcerecordid>oai_HAL_hal_01238943v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU-9emidfLRJwctSdFdc8KLnkCazmCWmkpSF9dfbsuLR08Dw3sA8Qm4pVBRoc7-vbHamYkDrCkQFIM7IgirJSslrdk4WEyTLVkh-Sa5y3gMAE1ItCH3BFDEUa4yYTPDf6IrOxCF6a0LRDSlhMKMfYrGKJhyzz9fkYmdCxpvfuSTvT49v3abcvq6fu9W2tFyqseQ99C1lbd9bW7tW9rx2yrhWKWF4AwIZNLWzAlC6pqbIGyepsa2g0jGwii_J3enuhwn6K_lPk456MF5vVls974AyrlrBD3Ri2Ym1acg54e5PoKDnQHqv50B6DqRB6CnQJD2cJJy-OHhMOluP0aLzCe2o3eD_038ACCptLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kernel Generalized Canonical Correlation Analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Tenenhaus, Arthur ; Philippe, Cathy ; Frouin, Vincent</creator><creatorcontrib>Tenenhaus, Arthur ; Philippe, Cathy ; Frouin, Vincent</creatorcontrib><description>There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma.
KGCCA is available on CRAN as part of the RGCCA package.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2015.04.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Data integration ; Engineering Sciences ; Life Sciences ; Quantitative Methods ; Regularized Generalized Canonical Correlation analysis ; Reproducing Kernel Hilbert Space ; Signal and Image processing</subject><ispartof>Computational statistics & data analysis, 2015-10, Vol.90 (C), p.114-131</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</citedby><cites>FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</cites><orcidid>0000-0001-9360-6623 ; 0000-0003-3459-1518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947315001012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-01238943$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenenhaus, Arthur</creatorcontrib><creatorcontrib>Philippe, Cathy</creatorcontrib><creatorcontrib>Frouin, Vincent</creatorcontrib><title>Kernel Generalized Canonical Correlation Analysis</title><title>Computational statistics & data analysis</title><description>There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma.
KGCCA is available on CRAN as part of the RGCCA package.</description><subject>Data integration</subject><subject>Engineering Sciences</subject><subject>Life Sciences</subject><subject>Quantitative Methods</subject><subject>Regularized Generalized Canonical Correlation analysis</subject><subject>Reproducing Kernel Hilbert Space</subject><subject>Signal and Image processing</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU-9emidfLRJwctSdFdc8KLnkCazmCWmkpSF9dfbsuLR08Dw3sA8Qm4pVBRoc7-vbHamYkDrCkQFIM7IgirJSslrdk4WEyTLVkh-Sa5y3gMAE1ItCH3BFDEUa4yYTPDf6IrOxCF6a0LRDSlhMKMfYrGKJhyzz9fkYmdCxpvfuSTvT49v3abcvq6fu9W2tFyqseQ99C1lbd9bW7tW9rx2yrhWKWF4AwIZNLWzAlC6pqbIGyepsa2g0jGwii_J3enuhwn6K_lPk456MF5vVls974AyrlrBD3Ri2Ym1acg54e5PoKDnQHqv50B6DqRB6CnQJD2cJJy-OHhMOluP0aLzCe2o3eD_038ACCptLQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Tenenhaus, Arthur</creator><creator>Philippe, Cathy</creator><creator>Frouin, Vincent</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9360-6623</orcidid><orcidid>https://orcid.org/0000-0003-3459-1518</orcidid></search><sort><creationdate>20151001</creationdate><title>Kernel Generalized Canonical Correlation Analysis</title><author>Tenenhaus, Arthur ; Philippe, Cathy ; Frouin, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Data integration</topic><topic>Engineering Sciences</topic><topic>Life Sciences</topic><topic>Quantitative Methods</topic><topic>Regularized Generalized Canonical Correlation analysis</topic><topic>Reproducing Kernel Hilbert Space</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenenhaus, Arthur</creatorcontrib><creatorcontrib>Philippe, Cathy</creatorcontrib><creatorcontrib>Frouin, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenenhaus, Arthur</au><au>Philippe, Cathy</au><au>Frouin, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Generalized Canonical Correlation Analysis</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>90</volume><issue>C</issue><spage>114</spage><epage>131</epage><pages>114-131</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma.
KGCCA is available on CRAN as part of the RGCCA package.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2015.04.004</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9360-6623</orcidid><orcidid>https://orcid.org/0000-0003-3459-1518</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2015-10, Vol.90 (C), p.114-131 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01238943v1 |
source | Elsevier ScienceDirect Journals |
subjects | Data integration Engineering Sciences Life Sciences Quantitative Methods Regularized Generalized Canonical Correlation analysis Reproducing Kernel Hilbert Space Signal and Image processing |
title | Kernel Generalized Canonical Correlation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Generalized%20Canonical%20Correlation%20Analysis&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Tenenhaus,%20Arthur&rft.date=2015-10-01&rft.volume=90&rft.issue=C&rft.spage=114&rft.epage=131&rft.pages=114-131&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2015.04.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01238943v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167947315001012&rfr_iscdi=true |