Kernel Generalized Canonical Correlation Analysis

There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2015-10, Vol.90 (C), p.114-131
Hauptverfasser: Tenenhaus, Arthur, Philippe, Cathy, Frouin, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue C
container_start_page 114
container_title Computational statistics & data analysis
container_volume 90
creator Tenenhaus, Arthur
Philippe, Cathy
Frouin, Vincent
description There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma. KGCCA is available on CRAN as part of the RGCCA package.
doi_str_mv 10.1016/j.csda.2015.04.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01238943v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947315001012</els_id><sourcerecordid>oai_HAL_hal_01238943v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AU-9emidfLRJwctSdFdc8KLnkCazmCWmkpSF9dfbsuLR08Dw3sA8Qm4pVBRoc7-vbHamYkDrCkQFIM7IgirJSslrdk4WEyTLVkh-Sa5y3gMAE1ItCH3BFDEUa4yYTPDf6IrOxCF6a0LRDSlhMKMfYrGKJhyzz9fkYmdCxpvfuSTvT49v3abcvq6fu9W2tFyqseQ99C1lbd9bW7tW9rx2yrhWKWF4AwIZNLWzAlC6pqbIGyepsa2g0jGwii_J3enuhwn6K_lPk456MF5vVls974AyrlrBD3Ri2Ym1acg54e5PoKDnQHqv50B6DqRB6CnQJD2cJJy-OHhMOluP0aLzCe2o3eD_038ACCptLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kernel Generalized Canonical Correlation Analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Tenenhaus, Arthur ; Philippe, Cathy ; Frouin, Vincent</creator><creatorcontrib>Tenenhaus, Arthur ; Philippe, Cathy ; Frouin, Vincent</creatorcontrib><description>There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma. KGCCA is available on CRAN as part of the RGCCA package.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2015.04.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Data integration ; Engineering Sciences ; Life Sciences ; Quantitative Methods ; Regularized Generalized Canonical Correlation analysis ; Reproducing Kernel Hilbert Space ; Signal and Image processing</subject><ispartof>Computational statistics &amp; data analysis, 2015-10, Vol.90 (C), p.114-131</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</citedby><cites>FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</cites><orcidid>0000-0001-9360-6623 ; 0000-0003-3459-1518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947315001012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://centralesupelec.hal.science/hal-01238943$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tenenhaus, Arthur</creatorcontrib><creatorcontrib>Philippe, Cathy</creatorcontrib><creatorcontrib>Frouin, Vincent</creatorcontrib><title>Kernel Generalized Canonical Correlation Analysis</title><title>Computational statistics &amp; data analysis</title><description>There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma. KGCCA is available on CRAN as part of the RGCCA package.</description><subject>Data integration</subject><subject>Engineering Sciences</subject><subject>Life Sciences</subject><subject>Quantitative Methods</subject><subject>Regularized Generalized Canonical Correlation analysis</subject><subject>Reproducing Kernel Hilbert Space</subject><subject>Signal and Image processing</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AU-9emidfLRJwctSdFdc8KLnkCazmCWmkpSF9dfbsuLR08Dw3sA8Qm4pVBRoc7-vbHamYkDrCkQFIM7IgirJSslrdk4WEyTLVkh-Sa5y3gMAE1ItCH3BFDEUa4yYTPDf6IrOxCF6a0LRDSlhMKMfYrGKJhyzz9fkYmdCxpvfuSTvT49v3abcvq6fu9W2tFyqseQ99C1lbd9bW7tW9rx2yrhWKWF4AwIZNLWzAlC6pqbIGyepsa2g0jGwii_J3enuhwn6K_lPk456MF5vVls974AyrlrBD3Ri2Ym1acg54e5PoKDnQHqv50B6DqRB6CnQJD2cJJy-OHhMOluP0aLzCe2o3eD_038ACCptLQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Tenenhaus, Arthur</creator><creator>Philippe, Cathy</creator><creator>Frouin, Vincent</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9360-6623</orcidid><orcidid>https://orcid.org/0000-0003-3459-1518</orcidid></search><sort><creationdate>20151001</creationdate><title>Kernel Generalized Canonical Correlation Analysis</title><author>Tenenhaus, Arthur ; Philippe, Cathy ; Frouin, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3b0b9129bbcc5d97b35d8ad9884a3604e2065dc40e7d651e36d71ac9417d20c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Data integration</topic><topic>Engineering Sciences</topic><topic>Life Sciences</topic><topic>Quantitative Methods</topic><topic>Regularized Generalized Canonical Correlation analysis</topic><topic>Reproducing Kernel Hilbert Space</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenenhaus, Arthur</creatorcontrib><creatorcontrib>Philippe, Cathy</creatorcontrib><creatorcontrib>Frouin, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenenhaus, Arthur</au><au>Philippe, Cathy</au><au>Frouin, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel Generalized Canonical Correlation Analysis</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>90</volume><issue>C</issue><spage>114</spage><epage>131</epage><pages>114-131</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>There is a growing need to analyze datasets characterized by several sets of variables observed on a single set of observations. Such complex but structured dataset are known as multiblock dataset, and their analysis requires the development of new and flexible tools. For this purpose, Kernel Generalized Canonical Correlation Analysis (KGCCA) is proposed and offers a general framework for multiblock data analysis taking into account an a priori graph of connections between blocks. It appears that KGCCA subsumes, with a single monotonically convergent algorithm, a remarkably large number of well-known and new methods as particular cases. KGCCA is applied to a simulated 3-block dataset and a real molecular biology dataset that combines Gene Expression data, Comparative Genomic Hybridization data and a qualitative phenotype measured for a set of 53 children with glioma. KGCCA is available on CRAN as part of the RGCCA package.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2015.04.004</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9360-6623</orcidid><orcidid>https://orcid.org/0000-0003-3459-1518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2015-10, Vol.90 (C), p.114-131
issn 0167-9473
1872-7352
language eng
recordid cdi_hal_primary_oai_HAL_hal_01238943v1
source Elsevier ScienceDirect Journals
subjects Data integration
Engineering Sciences
Life Sciences
Quantitative Methods
Regularized Generalized Canonical Correlation analysis
Reproducing Kernel Hilbert Space
Signal and Image processing
title Kernel Generalized Canonical Correlation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel%20Generalized%20Canonical%20Correlation%20Analysis&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Tenenhaus,%20Arthur&rft.date=2015-10-01&rft.volume=90&rft.issue=C&rft.spage=114&rft.epage=131&rft.pages=114-131&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2015.04.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01238943v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167947315001012&rfr_iscdi=true