Structure of the light‐driven sodium pump KR2 and its implications for optogenetics

A key and common process present in organisms from all domains of life is the maintenance of the ion gradient between the inside and the outside of the cell. The gradient is generated by various active transporters, among which are the light‐driven ion pumps of the microbial rhodopsin family. Wherea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2016-04, Vol.283 (7), p.1232-1238
Hauptverfasser: Gushchin, Ivan, Shevchenko, Vitaly, Polovinkin, Vitaly, Borshchevskiy, Valentin, Buslaev, Pavel, Bamberg, Ernst, Gordeliy, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 7
container_start_page 1232
container_title The FEBS journal
container_volume 283
creator Gushchin, Ivan
Shevchenko, Vitaly
Polovinkin, Vitaly
Borshchevskiy, Valentin
Buslaev, Pavel
Bamberg, Ernst
Gordeliy, Valentin
description A key and common process present in organisms from all domains of life is the maintenance of the ion gradient between the inside and the outside of the cell. The gradient is generated by various active transporters, among which are the light‐driven ion pumps of the microbial rhodopsin family. Whereas the proton‐pumping and anion‐pumping rhodopsins have been known for a long time, the cation (sodium) pumps were described only recently. Following the discovery, high‐resolution atomic structures of the pump KR2 were determined that revealed the complete ion translocation pathway, including the positions of the characteristic Asn‐Asp‐Gln (NDQ) triad, the unusual ion uptake cavity acting as a selectivity filter, the unique N‐terminal α‐helix, capping the ion release cavity, and unexpected flexibility of the retinal‐binding pocket. The structures also revealed pentamerization of KR2 and binding of sodium ions at the interface. Finally, on the basis of the structures, potassium‐pumping KR2 variants have been designed, making the findings even more important for optogenetic applications. In this Structural Snapshot, we analyse the implications of the structural findings for understanding the sodium translocation mechanism and application of the pump and its mutants in optogenetics. Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins. Recently, a new class of MRs, light‐driven sodium pumps have been discovered, and several atomic resolution structures have been determined. In this structural snapshot, we analyze and compare the structures, and discuss their implications for understanding the mechanism of light‐driven ion translocation.
doi_str_mv 10.1111/febs.13585
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01235921v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4015451691</sourcerecordid><originalsourceid>FETCH-LOGICAL-h4455-331035f537781ac4394796d7ec400dd47ded98771da3f5aabeeab0a0718733fd3</originalsourceid><addsrcrecordid>eNp9kc1OwzAMxyMEgjG48AAoEhc4dCRN0rTHMfElJiEBk7hFWZOyTG1TmnSIG4_AM_IkZGzswAHLki37J8v2H4AjjAY42Hmhp26ACUvZFuhhTuOIJizd3uT0eQ_sOzdHiDCaZbtgL04YYSyhPTB59G2X-67V0BbQzzQszcvMf318qtYsdA2dVaarYNNVDbx7iKGsFTTeQVM1pcmlN7Z2sLAttI23L7rW3uTuAOwUsnT6cB37YHJ1-TS6icb317ej4TiaUcpYRAgOKxWMcJ5imVOSUZ4liuucIqQU5UqrLOUcK0kKJuVUazlFEnGcckIKRfrgbDV3JkvRtKaS7buw0oib4VgsawjHhGUxXuDAnq7YprWvnXZeVMbluixlrW3nBOY8S9OY4SSgJ3_Que3aOlwicIaS4ITH_1JhVoLCs3mgjtdUN6202mz5K0EA8Ap4M6V-3_QxEktxxVJc8SOuuLq8ePzJyDeh7JWB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779605497</pqid></control><display><type>article</type><title>Structure of the light‐driven sodium pump KR2 and its implications for optogenetics</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Gushchin, Ivan ; Shevchenko, Vitaly ; Polovinkin, Vitaly ; Borshchevskiy, Valentin ; Buslaev, Pavel ; Bamberg, Ernst ; Gordeliy, Valentin</creator><creatorcontrib>Gushchin, Ivan ; Shevchenko, Vitaly ; Polovinkin, Vitaly ; Borshchevskiy, Valentin ; Buslaev, Pavel ; Bamberg, Ernst ; Gordeliy, Valentin</creatorcontrib><description>A key and common process present in organisms from all domains of life is the maintenance of the ion gradient between the inside and the outside of the cell. The gradient is generated by various active transporters, among which are the light‐driven ion pumps of the microbial rhodopsin family. Whereas the proton‐pumping and anion‐pumping rhodopsins have been known for a long time, the cation (sodium) pumps were described only recently. Following the discovery, high‐resolution atomic structures of the pump KR2 were determined that revealed the complete ion translocation pathway, including the positions of the characteristic Asn‐Asp‐Gln (NDQ) triad, the unusual ion uptake cavity acting as a selectivity filter, the unique N‐terminal α‐helix, capping the ion release cavity, and unexpected flexibility of the retinal‐binding pocket. The structures also revealed pentamerization of KR2 and binding of sodium ions at the interface. Finally, on the basis of the structures, potassium‐pumping KR2 variants have been designed, making the findings even more important for optogenetic applications. In this Structural Snapshot, we analyse the implications of the structural findings for understanding the sodium translocation mechanism and application of the pump and its mutants in optogenetics. Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins. Recently, a new class of MRs, light‐driven sodium pumps have been discovered, and several atomic resolution structures have been determined. In this structural snapshot, we analyze and compare the structures, and discuss their implications for understanding the mechanism of light‐driven ion translocation.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.13585</identifier><identifier>PMID: 26535564</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Atomic structure ; Binding ; Binding Sites - genetics ; Biochemistry, Molecular Biology ; Capping ; Cations ; Cellular biology ; crystal structure ; Crystallography, X-Ray ; Flexibility ; Genetics ; High resolution ; Holes ; Information processing ; Ion pumps ; Ion Transport - radiation effects ; Ions ; Life Sciences ; Light ; Light effects ; light‐driven ; Maintenance ; microbial rhodopsins ; Microbiology ; Microorganisms ; Models, Chemical ; Models, Molecular ; Mutants ; Mutation ; Na+/K+-exchanging ATPase ; Optics ; optogenetics tools ; Photolysis - radiation effects ; Potassium ; potassium pump ; Protein Engineering - methods ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pumping ; Pumps ; Retina ; Rhodopsin ; Selectivity ; Sodium ; Sodium - chemistry ; Sodium - metabolism ; sodium pump ; Sodium-Potassium-Exchanging ATPase - chemistry ; Sodium-Potassium-Exchanging ATPase - genetics ; Sodium-Potassium-Exchanging ATPase - metabolism ; Structural Biology ; Translocation</subject><ispartof>The FEBS journal, 2016-04, Vol.283 (7), p.1232-1238</ispartof><rights>2015 FEBS</rights><rights>2015 FEBS.</rights><rights>Copyright © 2016 Federation of European Biochemical Societies</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.13585$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.13585$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26535564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-01235921$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gushchin, Ivan</creatorcontrib><creatorcontrib>Shevchenko, Vitaly</creatorcontrib><creatorcontrib>Polovinkin, Vitaly</creatorcontrib><creatorcontrib>Borshchevskiy, Valentin</creatorcontrib><creatorcontrib>Buslaev, Pavel</creatorcontrib><creatorcontrib>Bamberg, Ernst</creatorcontrib><creatorcontrib>Gordeliy, Valentin</creatorcontrib><title>Structure of the light‐driven sodium pump KR2 and its implications for optogenetics</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>A key and common process present in organisms from all domains of life is the maintenance of the ion gradient between the inside and the outside of the cell. The gradient is generated by various active transporters, among which are the light‐driven ion pumps of the microbial rhodopsin family. Whereas the proton‐pumping and anion‐pumping rhodopsins have been known for a long time, the cation (sodium) pumps were described only recently. Following the discovery, high‐resolution atomic structures of the pump KR2 were determined that revealed the complete ion translocation pathway, including the positions of the characteristic Asn‐Asp‐Gln (NDQ) triad, the unusual ion uptake cavity acting as a selectivity filter, the unique N‐terminal α‐helix, capping the ion release cavity, and unexpected flexibility of the retinal‐binding pocket. The structures also revealed pentamerization of KR2 and binding of sodium ions at the interface. Finally, on the basis of the structures, potassium‐pumping KR2 variants have been designed, making the findings even more important for optogenetic applications. In this Structural Snapshot, we analyse the implications of the structural findings for understanding the sodium translocation mechanism and application of the pump and its mutants in optogenetics. Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins. Recently, a new class of MRs, light‐driven sodium pumps have been discovered, and several atomic resolution structures have been determined. In this structural snapshot, we analyze and compare the structures, and discuss their implications for understanding the mechanism of light‐driven ion translocation.</description><subject>Atomic structure</subject><subject>Binding</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry, Molecular Biology</subject><subject>Capping</subject><subject>Cations</subject><subject>Cellular biology</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Flexibility</subject><subject>Genetics</subject><subject>High resolution</subject><subject>Holes</subject><subject>Information processing</subject><subject>Ion pumps</subject><subject>Ion Transport - radiation effects</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Light effects</subject><subject>light‐driven</subject><subject>Maintenance</subject><subject>microbial rhodopsins</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Na+/K+-exchanging ATPase</subject><subject>Optics</subject><subject>optogenetics tools</subject><subject>Photolysis - radiation effects</subject><subject>Potassium</subject><subject>potassium pump</subject><subject>Protein Engineering - methods</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Pumping</subject><subject>Pumps</subject><subject>Retina</subject><subject>Rhodopsin</subject><subject>Selectivity</subject><subject>Sodium</subject><subject>Sodium - chemistry</subject><subject>Sodium - metabolism</subject><subject>sodium pump</subject><subject>Sodium-Potassium-Exchanging ATPase - chemistry</subject><subject>Sodium-Potassium-Exchanging ATPase - genetics</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Structural Biology</subject><subject>Translocation</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1OwzAMxyMEgjG48AAoEhc4dCRN0rTHMfElJiEBk7hFWZOyTG1TmnSIG4_AM_IkZGzswAHLki37J8v2H4AjjAY42Hmhp26ACUvZFuhhTuOIJizd3uT0eQ_sOzdHiDCaZbtgL04YYSyhPTB59G2X-67V0BbQzzQszcvMf318qtYsdA2dVaarYNNVDbx7iKGsFTTeQVM1pcmlN7Z2sLAttI23L7rW3uTuAOwUsnT6cB37YHJ1-TS6icb317ej4TiaUcpYRAgOKxWMcJ5imVOSUZ4liuucIqQU5UqrLOUcK0kKJuVUazlFEnGcckIKRfrgbDV3JkvRtKaS7buw0oib4VgsawjHhGUxXuDAnq7YprWvnXZeVMbluixlrW3nBOY8S9OY4SSgJ3_Que3aOlwicIaS4ITH_1JhVoLCs3mgjtdUN6202mz5K0EA8Ap4M6V-3_QxEktxxVJc8SOuuLq8ePzJyDeh7JWB</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Gushchin, Ivan</creator><creator>Shevchenko, Vitaly</creator><creator>Polovinkin, Vitaly</creator><creator>Borshchevskiy, Valentin</creator><creator>Buslaev, Pavel</creator><creator>Bamberg, Ernst</creator><creator>Gordeliy, Valentin</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>201604</creationdate><title>Structure of the light‐driven sodium pump KR2 and its implications for optogenetics</title><author>Gushchin, Ivan ; Shevchenko, Vitaly ; Polovinkin, Vitaly ; Borshchevskiy, Valentin ; Buslaev, Pavel ; Bamberg, Ernst ; Gordeliy, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h4455-331035f537781ac4394796d7ec400dd47ded98771da3f5aabeeab0a0718733fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic structure</topic><topic>Binding</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry, Molecular Biology</topic><topic>Capping</topic><topic>Cations</topic><topic>Cellular biology</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Flexibility</topic><topic>Genetics</topic><topic>High resolution</topic><topic>Holes</topic><topic>Information processing</topic><topic>Ion pumps</topic><topic>Ion Transport - radiation effects</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Light effects</topic><topic>light‐driven</topic><topic>Maintenance</topic><topic>microbial rhodopsins</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Na+/K+-exchanging ATPase</topic><topic>Optics</topic><topic>optogenetics tools</topic><topic>Photolysis - radiation effects</topic><topic>Potassium</topic><topic>potassium pump</topic><topic>Protein Engineering - methods</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Pumping</topic><topic>Pumps</topic><topic>Retina</topic><topic>Rhodopsin</topic><topic>Selectivity</topic><topic>Sodium</topic><topic>Sodium - chemistry</topic><topic>Sodium - metabolism</topic><topic>sodium pump</topic><topic>Sodium-Potassium-Exchanging ATPase - chemistry</topic><topic>Sodium-Potassium-Exchanging ATPase - genetics</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Structural Biology</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gushchin, Ivan</creatorcontrib><creatorcontrib>Shevchenko, Vitaly</creatorcontrib><creatorcontrib>Polovinkin, Vitaly</creatorcontrib><creatorcontrib>Borshchevskiy, Valentin</creatorcontrib><creatorcontrib>Buslaev, Pavel</creatorcontrib><creatorcontrib>Bamberg, Ernst</creatorcontrib><creatorcontrib>Gordeliy, Valentin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gushchin, Ivan</au><au>Shevchenko, Vitaly</au><au>Polovinkin, Vitaly</au><au>Borshchevskiy, Valentin</au><au>Buslaev, Pavel</au><au>Bamberg, Ernst</au><au>Gordeliy, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the light‐driven sodium pump KR2 and its implications for optogenetics</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2016-04</date><risdate>2016</risdate><volume>283</volume><issue>7</issue><spage>1232</spage><epage>1238</epage><pages>1232-1238</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>A key and common process present in organisms from all domains of life is the maintenance of the ion gradient between the inside and the outside of the cell. The gradient is generated by various active transporters, among which are the light‐driven ion pumps of the microbial rhodopsin family. Whereas the proton‐pumping and anion‐pumping rhodopsins have been known for a long time, the cation (sodium) pumps were described only recently. Following the discovery, high‐resolution atomic structures of the pump KR2 were determined that revealed the complete ion translocation pathway, including the positions of the characteristic Asn‐Asp‐Gln (NDQ) triad, the unusual ion uptake cavity acting as a selectivity filter, the unique N‐terminal α‐helix, capping the ion release cavity, and unexpected flexibility of the retinal‐binding pocket. The structures also revealed pentamerization of KR2 and binding of sodium ions at the interface. Finally, on the basis of the structures, potassium‐pumping KR2 variants have been designed, making the findings even more important for optogenetic applications. In this Structural Snapshot, we analyse the implications of the structural findings for understanding the sodium translocation mechanism and application of the pump and its mutants in optogenetics. Microbial rhodopsins (MRs) are a large family of photoactive membrane proteins. Recently, a new class of MRs, light‐driven sodium pumps have been discovered, and several atomic resolution structures have been determined. In this structural snapshot, we analyze and compare the structures, and discuss their implications for understanding the mechanism of light‐driven ion translocation.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26535564</pmid><doi>10.1111/febs.13585</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2016-04, Vol.283 (7), p.1232-1238
issn 1742-464X
1742-4658
language eng
recordid cdi_hal_primary_oai_HAL_hal_01235921v1
source MEDLINE; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Atomic structure
Binding
Binding Sites - genetics
Biochemistry, Molecular Biology
Capping
Cations
Cellular biology
crystal structure
Crystallography, X-Ray
Flexibility
Genetics
High resolution
Holes
Information processing
Ion pumps
Ion Transport - radiation effects
Ions
Life Sciences
Light
Light effects
light‐driven
Maintenance
microbial rhodopsins
Microbiology
Microorganisms
Models, Chemical
Models, Molecular
Mutants
Mutation
Na+/K+-exchanging ATPase
Optics
optogenetics tools
Photolysis - radiation effects
Potassium
potassium pump
Protein Engineering - methods
Protein Multimerization
Protein Structure, Secondary
Protein Structure, Tertiary
Pumping
Pumps
Retina
Rhodopsin
Selectivity
Sodium
Sodium - chemistry
Sodium - metabolism
sodium pump
Sodium-Potassium-Exchanging ATPase - chemistry
Sodium-Potassium-Exchanging ATPase - genetics
Sodium-Potassium-Exchanging ATPase - metabolism
Structural Biology
Translocation
title Structure of the light‐driven sodium pump KR2 and its implications for optogenetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%20light%E2%80%90driven%20sodium%20pump%20KR2%20and%20its%20implications%20for%20optogenetics&rft.jtitle=The%20FEBS%20journal&rft.au=Gushchin,%20Ivan&rft.date=2016-04&rft.volume=283&rft.issue=7&rft.spage=1232&rft.epage=1238&rft.pages=1232-1238&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.13585&rft_dat=%3Cproquest_hal_p%3E4015451691%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779605497&rft_id=info:pmid/26535564&rfr_iscdi=true