Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors

A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2015-10, Vol.350 (6257), p.185-189
Hauptverfasser: Calle-Vallejo, Federico, Tymoczko, Jakub, Colic, Viktor, Vu, Quang Huy, Pohl, Marcus D., Morgenstern, Karina, Loffreda, David, Sautet, Philippe, Schuhmann, Wolfgang, Bandarenka, Aliaksandr S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 6257
container_start_page 185
container_title Science (American Association for the Advancement of Science)
container_volume 350
creator Calle-Vallejo, Federico
Tymoczko, Jakub
Colic, Viktor
Vu, Quang Huy
Pohl, Marcus D.
Morgenstern, Karina
Loffreda, David
Sautet, Philippe
Schuhmann, Wolfgang
Bandarenka, Aliaksandr S.
description A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.
doi_str_mv 10.1126/science.aab3501
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01234587v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24749518</jstor_id><sourcerecordid>24749518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVJaVy3554SFnppD5uMvqVjCE1TMPTS5CokrdZes145kjbg_z67tZtCLz0NzPzmMW8eQp8wXGFMxHX2XRh8uLLWUQ74DVpg0LzWBOgZWgBQUSuQ_By9z3kLMM00fYfOiWAcCMgFerzrhqYb1lXcl25n-yqPqbU-VLkrIVdxqDahhBTXYQhxzJW3xfaHXHLlDpWP41Dm5SHYFHKZarfeuJjyB_S2tX0OH091iR7uvv26va9XP7__uL1Z1Z5jWWrduJYqwRWAAKctxbJRvLEitAHT4JyTQknPfMO04IJIonCjPWG21YpMyBJ9PepubG_2aXKQDibaztzfrMzcA0wo40o-z-yXI7tP8WmczjW7LvvQ9_a3NYM1MEIFJ-z_qCSYcj1_c4k-_4Nu45iGyfRMAVMU6Cx4faR8ijmn0L4ei8HMSZpTkuaU5LRxedId3S40r_yf6Cbg4ghsc4np75xJpjlW9AWAnqQt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1720483034</pqid></control><display><type>article</type><title>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Calle-Vallejo, Federico ; Tymoczko, Jakub ; Colic, Viktor ; Vu, Quang Huy ; Pohl, Marcus D. ; Morgenstern, Karina ; Loffreda, David ; Sautet, Philippe ; Schuhmann, Wolfgang ; Bandarenka, Aliaksandr S.</creator><creatorcontrib>Calle-Vallejo, Federico ; Tymoczko, Jakub ; Colic, Viktor ; Vu, Quang Huy ; Pohl, Marcus D. ; Morgenstern, Karina ; Loffreda, David ; Sautet, Philippe ; Schuhmann, Wolfgang ; Bandarenka, Aliaksandr S.</creatorcontrib><description>A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aab3501</identifier><identifier>PMID: 26450207</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adsorption ; Atoms &amp; subatomic particles ; Catalysis ; Catalysts ; Catalytic activity ; Chemical reactions ; Chemical Sciences ; Chemistry ; Geometry ; Mathematical analysis ; Optimization ; or physical chemistry ; Oxygen ; Reduction ; Surface chemistry ; Theoretical and</subject><ispartof>Science (American Association for the Advancement of Science), 2015-10, Vol.350 (6257), p.185-189</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</citedby><cites>FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</cites><orcidid>0000-0001-9912-7965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24749518$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24749518$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26450207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01234587$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calle-Vallejo, Federico</creatorcontrib><creatorcontrib>Tymoczko, Jakub</creatorcontrib><creatorcontrib>Colic, Viktor</creatorcontrib><creatorcontrib>Vu, Quang Huy</creatorcontrib><creatorcontrib>Pohl, Marcus D.</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><creatorcontrib>Loffreda, David</creatorcontrib><creatorcontrib>Sautet, Philippe</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><creatorcontrib>Bandarenka, Aliaksandr S.</creatorcontrib><title>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.</description><subject>Adsorption</subject><subject>Atoms &amp; subatomic particles</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>or physical chemistry</subject><subject>Oxygen</subject><subject>Reduction</subject><subject>Surface chemistry</subject><subject>Theoretical and</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rGzEQxUVJaVy3554SFnppD5uMvqVjCE1TMPTS5CokrdZes145kjbg_z67tZtCLz0NzPzmMW8eQp8wXGFMxHX2XRh8uLLWUQ74DVpg0LzWBOgZWgBQUSuQ_By9z3kLMM00fYfOiWAcCMgFerzrhqYb1lXcl25n-yqPqbU-VLkrIVdxqDahhBTXYQhxzJW3xfaHXHLlDpWP41Dm5SHYFHKZarfeuJjyB_S2tX0OH091iR7uvv26va9XP7__uL1Z1Z5jWWrduJYqwRWAAKctxbJRvLEitAHT4JyTQknPfMO04IJIonCjPWG21YpMyBJ9PepubG_2aXKQDibaztzfrMzcA0wo40o-z-yXI7tP8WmczjW7LvvQ9_a3NYM1MEIFJ-z_qCSYcj1_c4k-_4Nu45iGyfRMAVMU6Cx4faR8ijmn0L4ei8HMSZpTkuaU5LRxedId3S40r_yf6Cbg4ghsc4np75xJpjlW9AWAnqQt</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Calle-Vallejo, Federico</creator><creator>Tymoczko, Jakub</creator><creator>Colic, Viktor</creator><creator>Vu, Quang Huy</creator><creator>Pohl, Marcus D.</creator><creator>Morgenstern, Karina</creator><creator>Loffreda, David</creator><creator>Sautet, Philippe</creator><creator>Schuhmann, Wolfgang</creator><creator>Bandarenka, Aliaksandr S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9912-7965</orcidid></search><sort><creationdate>20151009</creationdate><title>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</title><author>Calle-Vallejo, Federico ; Tymoczko, Jakub ; Colic, Viktor ; Vu, Quang Huy ; Pohl, Marcus D. ; Morgenstern, Karina ; Loffreda, David ; Sautet, Philippe ; Schuhmann, Wolfgang ; Bandarenka, Aliaksandr S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Atoms &amp; subatomic particles</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>or physical chemistry</topic><topic>Oxygen</topic><topic>Reduction</topic><topic>Surface chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calle-Vallejo, Federico</creatorcontrib><creatorcontrib>Tymoczko, Jakub</creatorcontrib><creatorcontrib>Colic, Viktor</creatorcontrib><creatorcontrib>Vu, Quang Huy</creatorcontrib><creatorcontrib>Pohl, Marcus D.</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><creatorcontrib>Loffreda, David</creatorcontrib><creatorcontrib>Sautet, Philippe</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><creatorcontrib>Bandarenka, Aliaksandr S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calle-Vallejo, Federico</au><au>Tymoczko, Jakub</au><au>Colic, Viktor</au><au>Vu, Quang Huy</au><au>Pohl, Marcus D.</au><au>Morgenstern, Karina</au><au>Loffreda, David</au><au>Sautet, Philippe</au><au>Schuhmann, Wolfgang</au><au>Bandarenka, Aliaksandr S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>350</volume><issue>6257</issue><spage>185</spage><epage>189</epage><pages>185-189</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26450207</pmid><doi>10.1126/science.aab3501</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9912-7965</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2015-10, Vol.350 (6257), p.185-189
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_01234587v1
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Adsorption
Atoms & subatomic particles
Catalysis
Catalysts
Catalytic activity
Chemical reactions
Chemical Sciences
Chemistry
Geometry
Mathematical analysis
Optimization
or physical chemistry
Oxygen
Reduction
Surface chemistry
Theoretical and
title Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20optimal%20surface%20sites%20on%20heterogeneous%20catalysts%20by%20counting%20nearest%20neighbors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Calle-Vallejo,%20Federico&rft.date=2015-10-09&rft.volume=350&rft.issue=6257&rft.spage=185&rft.epage=189&rft.pages=185-189&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aab3501&rft_dat=%3Cjstor_hal_p%3E24749518%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1720483034&rft_id=info:pmid/26450207&rft_jstor_id=24749518&rfr_iscdi=true