Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-10, Vol.350 (6257), p.185-189 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 6257 |
container_start_page | 185 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 350 |
creator | Calle-Vallejo, Federico Tymoczko, Jakub Colic, Viktor Vu, Quang Huy Pohl, Marcus D. Morgenstern, Karina Loffreda, David Sautet, Philippe Schuhmann, Wolfgang Bandarenka, Aliaksandr S. |
description | A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods. |
doi_str_mv | 10.1126/science.aab3501 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01234587v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24749518</jstor_id><sourcerecordid>24749518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVJaVy3554SFnppD5uMvqVjCE1TMPTS5CokrdZes145kjbg_z67tZtCLz0NzPzmMW8eQp8wXGFMxHX2XRh8uLLWUQ74DVpg0LzWBOgZWgBQUSuQ_By9z3kLMM00fYfOiWAcCMgFerzrhqYb1lXcl25n-yqPqbU-VLkrIVdxqDahhBTXYQhxzJW3xfaHXHLlDpWP41Dm5SHYFHKZarfeuJjyB_S2tX0OH091iR7uvv26va9XP7__uL1Z1Z5jWWrduJYqwRWAAKctxbJRvLEitAHT4JyTQknPfMO04IJIonCjPWG21YpMyBJ9PepubG_2aXKQDibaztzfrMzcA0wo40o-z-yXI7tP8WmczjW7LvvQ9_a3NYM1MEIFJ-z_qCSYcj1_c4k-_4Nu45iGyfRMAVMU6Cx4faR8ijmn0L4ei8HMSZpTkuaU5LRxedId3S40r_yf6Cbg4ghsc4np75xJpjlW9AWAnqQt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1720483034</pqid></control><display><type>article</type><title>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Calle-Vallejo, Federico ; Tymoczko, Jakub ; Colic, Viktor ; Vu, Quang Huy ; Pohl, Marcus D. ; Morgenstern, Karina ; Loffreda, David ; Sautet, Philippe ; Schuhmann, Wolfgang ; Bandarenka, Aliaksandr S.</creator><creatorcontrib>Calle-Vallejo, Federico ; Tymoczko, Jakub ; Colic, Viktor ; Vu, Quang Huy ; Pohl, Marcus D. ; Morgenstern, Karina ; Loffreda, David ; Sautet, Philippe ; Schuhmann, Wolfgang ; Bandarenka, Aliaksandr S.</creatorcontrib><description>A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aab3501</identifier><identifier>PMID: 26450207</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adsorption ; Atoms & subatomic particles ; Catalysis ; Catalysts ; Catalytic activity ; Chemical reactions ; Chemical Sciences ; Chemistry ; Geometry ; Mathematical analysis ; Optimization ; or physical chemistry ; Oxygen ; Reduction ; Surface chemistry ; Theoretical and</subject><ispartof>Science (American Association for the Advancement of Science), 2015-10, Vol.350 (6257), p.185-189</ispartof><rights>Copyright © 2015 American Association for the Advancement of Science</rights><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><rights>Copyright © 2015, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</citedby><cites>FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</cites><orcidid>0000-0001-9912-7965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24749518$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24749518$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26450207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01234587$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calle-Vallejo, Federico</creatorcontrib><creatorcontrib>Tymoczko, Jakub</creatorcontrib><creatorcontrib>Colic, Viktor</creatorcontrib><creatorcontrib>Vu, Quang Huy</creatorcontrib><creatorcontrib>Pohl, Marcus D.</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><creatorcontrib>Loffreda, David</creatorcontrib><creatorcontrib>Sautet, Philippe</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><creatorcontrib>Bandarenka, Aliaksandr S.</creatorcontrib><title>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.</description><subject>Adsorption</subject><subject>Atoms & subatomic particles</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>or physical chemistry</subject><subject>Oxygen</subject><subject>Reduction</subject><subject>Surface chemistry</subject><subject>Theoretical and</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rGzEQxUVJaVy3554SFnppD5uMvqVjCE1TMPTS5CokrdZes145kjbg_z67tZtCLz0NzPzmMW8eQp8wXGFMxHX2XRh8uLLWUQ74DVpg0LzWBOgZWgBQUSuQ_By9z3kLMM00fYfOiWAcCMgFerzrhqYb1lXcl25n-yqPqbU-VLkrIVdxqDahhBTXYQhxzJW3xfaHXHLlDpWP41Dm5SHYFHKZarfeuJjyB_S2tX0OH091iR7uvv26va9XP7__uL1Z1Z5jWWrduJYqwRWAAKctxbJRvLEitAHT4JyTQknPfMO04IJIonCjPWG21YpMyBJ9PepubG_2aXKQDibaztzfrMzcA0wo40o-z-yXI7tP8WmczjW7LvvQ9_a3NYM1MEIFJ-z_qCSYcj1_c4k-_4Nu45iGyfRMAVMU6Cx4faR8ijmn0L4ei8HMSZpTkuaU5LRxedId3S40r_yf6Cbg4ghsc4np75xJpjlW9AWAnqQt</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Calle-Vallejo, Federico</creator><creator>Tymoczko, Jakub</creator><creator>Colic, Viktor</creator><creator>Vu, Quang Huy</creator><creator>Pohl, Marcus D.</creator><creator>Morgenstern, Karina</creator><creator>Loffreda, David</creator><creator>Sautet, Philippe</creator><creator>Schuhmann, Wolfgang</creator><creator>Bandarenka, Aliaksandr S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9912-7965</orcidid></search><sort><creationdate>20151009</creationdate><title>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</title><author>Calle-Vallejo, Federico ; Tymoczko, Jakub ; Colic, Viktor ; Vu, Quang Huy ; Pohl, Marcus D. ; Morgenstern, Karina ; Loffreda, David ; Sautet, Philippe ; Schuhmann, Wolfgang ; Bandarenka, Aliaksandr S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-9dbf386580060b9a317d85da6efe13ebbb7687c4cd4965627281d9c24af982e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorption</topic><topic>Atoms & subatomic particles</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>or physical chemistry</topic><topic>Oxygen</topic><topic>Reduction</topic><topic>Surface chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calle-Vallejo, Federico</creatorcontrib><creatorcontrib>Tymoczko, Jakub</creatorcontrib><creatorcontrib>Colic, Viktor</creatorcontrib><creatorcontrib>Vu, Quang Huy</creatorcontrib><creatorcontrib>Pohl, Marcus D.</creatorcontrib><creatorcontrib>Morgenstern, Karina</creatorcontrib><creatorcontrib>Loffreda, David</creatorcontrib><creatorcontrib>Sautet, Philippe</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><creatorcontrib>Bandarenka, Aliaksandr S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calle-Vallejo, Federico</au><au>Tymoczko, Jakub</au><au>Colic, Viktor</au><au>Vu, Quang Huy</au><au>Pohl, Marcus D.</au><au>Morgenstern, Karina</au><au>Loffreda, David</au><au>Sautet, Philippe</au><au>Schuhmann, Wolfgang</au><au>Bandarenka, Aliaksandr S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>350</volume><issue>6257</issue><spage>185</spage><epage>189</epage><pages>185-189</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>26450207</pmid><doi>10.1126/science.aab3501</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9912-7965</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2015-10, Vol.350 (6257), p.185-189 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01234587v1 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Adsorption Atoms & subatomic particles Catalysis Catalysts Catalytic activity Chemical reactions Chemical Sciences Chemistry Geometry Mathematical analysis Optimization or physical chemistry Oxygen Reduction Surface chemistry Theoretical and |
title | Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20optimal%20surface%20sites%20on%20heterogeneous%20catalysts%20by%20counting%20nearest%20neighbors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Calle-Vallejo,%20Federico&rft.date=2015-10-09&rft.volume=350&rft.issue=6257&rft.spage=185&rft.epage=189&rft.pages=185-189&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aab3501&rft_dat=%3Cjstor_hal_p%3E24749518%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1720483034&rft_id=info:pmid/26450207&rft_jstor_id=24749518&rfr_iscdi=true |