Some remarks about flows of Hilbert–Schmidt operators
This paper deals with bracket flows of Hilbert–Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences.
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2017-06, Vol.17 (2), p.805-826 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 826 |
---|---|
container_issue | 2 |
container_start_page | 805 |
container_title | Journal of evolution equations |
container_volume | 17 |
creator | Boutin, B. Raymond, N. |
description | This paper deals with bracket flows of Hilbert–Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences. |
doi_str_mv | 10.1007/s00028-016-0337-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01232530v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912245501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-5674e2c7e18a132b6acf12f9ba549ef0e0c375d167c3f97f48695a02892e39403</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaRWLEIzPgnjpdVBRSpEovC2nJSm6akdbFTEDvuwA05Ca4CiA2rGY2-9_TmEXKKcIEA8jICAC1zwCIHxmTO9sgAOeU5o0D3f3ZU6pAcxbgEQClKMSBy5lc2C3ZlwlPMTOW3XeZa_xoz77JJ01Y2dJ_vH7N6sWrmXeY3NpjOh3hMDpxpoz35nkPycH11P57k07ub2_FomteMiy4XheSW1tJiaZDRqjC1Q-pUZQRX1oGFmkkxx0LWzCnpeFkoYdInilqmOLAhOe99F6bVm9CknG_am0ZPRlO9uwFSRgWDF5rYs57dBP-8tbHTS78N6xRPo0JKuRCAicKeqoOPMVj3a4ugd13qvsvkXOhdl5olDe01MbHrRxv-OP8r-gIcD3Tp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912245501</pqid></control><display><type>article</type><title>Some remarks about flows of Hilbert–Schmidt operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Boutin, B. ; Raymond, N.</creator><creatorcontrib>Boutin, B. ; Raymond, N.</creatorcontrib><description>This paper deals with bracket flows of Hilbert–Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-016-0337-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Convergence ; Mathematics ; Mathematics and Statistics ; Operators ; Spectral Theory</subject><ispartof>Journal of evolution equations, 2017-06, Vol.17 (2), p.805-826</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c345t-5674e2c7e18a132b6acf12f9ba549ef0e0c375d167c3f97f48695a02892e39403</cites><orcidid>0000-0002-4012-6922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-016-0337-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-016-0337-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01232530$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boutin, B.</creatorcontrib><creatorcontrib>Raymond, N.</creatorcontrib><title>Some remarks about flows of Hilbert–Schmidt operators</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>This paper deals with bracket flows of Hilbert–Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences.</description><subject>Analysis</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Spectral Theory</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaRWLEIzPgnjpdVBRSpEovC2nJSm6akdbFTEDvuwA05Ca4CiA2rGY2-9_TmEXKKcIEA8jICAC1zwCIHxmTO9sgAOeU5o0D3f3ZU6pAcxbgEQClKMSBy5lc2C3ZlwlPMTOW3XeZa_xoz77JJ01Y2dJ_vH7N6sWrmXeY3NpjOh3hMDpxpoz35nkPycH11P57k07ub2_FomteMiy4XheSW1tJiaZDRqjC1Q-pUZQRX1oGFmkkxx0LWzCnpeFkoYdInilqmOLAhOe99F6bVm9CknG_am0ZPRlO9uwFSRgWDF5rYs57dBP-8tbHTS78N6xRPo0JKuRCAicKeqoOPMVj3a4ugd13qvsvkXOhdl5olDe01MbHrRxv-OP8r-gIcD3Tp</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Boutin, B.</creator><creator>Raymond, N.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4012-6922</orcidid></search><sort><creationdate>20170601</creationdate><title>Some remarks about flows of Hilbert–Schmidt operators</title><author>Boutin, B. ; Raymond, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-5674e2c7e18a132b6acf12f9ba549ef0e0c375d167c3f97f48695a02892e39403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Spectral Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boutin, B.</creatorcontrib><creatorcontrib>Raymond, N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boutin, B.</au><au>Raymond, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks about flows of Hilbert–Schmidt operators</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>17</volume><issue>2</issue><spage>805</spage><epage>826</epage><pages>805-826</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>This paper deals with bracket flows of Hilbert–Schmidt operators. We establish elementary convergence results for such flows and discuss some of their consequences.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-016-0337-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-4012-6922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-3199 |
ispartof | Journal of evolution equations, 2017-06, Vol.17 (2), p.805-826 |
issn | 1424-3199 1424-3202 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01232530v2 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Convergence Mathematics Mathematics and Statistics Operators Spectral Theory |
title | Some remarks about flows of Hilbert–Schmidt operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20about%20flows%20of%20Hilbert%E2%80%93Schmidt%20operators&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Boutin,%20B.&rft.date=2017-06-01&rft.volume=17&rft.issue=2&rft.spage=805&rft.epage=826&rft.pages=805-826&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-016-0337-3&rft_dat=%3Cproquest_hal_p%3E1912245501%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912245501&rft_id=info:pmid/&rfr_iscdi=true |