Substrate-induced cross-plane thermal propagative modes in few-layer graphene

We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205413
Hauptverfasser: Ni, Yuxiang, Kosevich, Yuriy A., Xiong, Shiyun, Chalopin, Yann, Volz, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B, Condensed matter and materials physics
container_volume 89
creator Ni, Yuxiang
Kosevich, Yuriy A.
Xiong, Shiyun
Chalopin, Yann
Volz, Sebastian
description We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.
doi_str_mv 10.1103/PhysRevB.89.205413
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01230135v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701031570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA6yyhIXL-NXYy1IBRSoC8ZDYWY7jNEF5YSdF_XtSAqxmNHN0pXsQOicwIwTY1VO-C89uez2TakZBcMIO0IQIAZgy8X447KAkBkLJMToJ4QOAcMXpBD289EnovOkcLuq0ty6NrG9CwG1pahd1ufOVKaPWN63ZmK7YuqhqUheioo4y94VLs3M-2njT5q52p-goM2VwZ79zit5ub16XK7x-vLtfLtbYMgkdtplhIs0kEYmjABL4nHFu1JxknCmb0NRAQlRM40wlVgoVq3R4gZhTKWNu2RRdjrm5KXXri8r4nW5MoVeLtd7fhqYMCBNbMrAXIzt0-Oxd6HRVBOvKfb-mD5rEMBgkIoYBpSP6o8C77D-bgN571n-etVR69My-Ac5Lcac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701031570</pqid></control><display><type>article</type><title>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</title><source>American Physical Society Journals</source><creator>Ni, Yuxiang ; Kosevich, Yuriy A. ; Xiong, Shiyun ; Chalopin, Yann ; Volz, Sebastian</creator><creatorcontrib>Ni, Yuxiang ; Kosevich, Yuriy A. ; Xiong, Shiyun ; Chalopin, Yann ; Volz, Sebastian</creatorcontrib><description>We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.89.205413</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Deformation mechanisms ; Engineering Sciences ; Formability ; Graphene ; Heat transfer ; Materials Science ; Mathematical models ; Mechanics ; Micro and nanotechnologies ; Microelectronics ; Phonons ; Physics ; Silicon dioxide ; Thermal resistance ; Thermics</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205413</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</citedby><cites>FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</cites><orcidid>0000-0002-1229-0995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01230135$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Kosevich, Yuriy A.</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chalopin, Yann</creatorcontrib><creatorcontrib>Volz, Sebastian</creatorcontrib><title>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</title><title>Physical review. B, Condensed matter and materials physics</title><description>We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.</description><subject>Condensed Matter</subject><subject>Deformation mechanisms</subject><subject>Engineering Sciences</subject><subject>Formability</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Silicon dioxide</subject><subject>Thermal resistance</subject><subject>Thermics</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA6yyhIXL-NXYy1IBRSoC8ZDYWY7jNEF5YSdF_XtSAqxmNHN0pXsQOicwIwTY1VO-C89uez2TakZBcMIO0IQIAZgy8X447KAkBkLJMToJ4QOAcMXpBD289EnovOkcLuq0ty6NrG9CwG1pahd1ufOVKaPWN63ZmK7YuqhqUheioo4y94VLs3M-2njT5q52p-goM2VwZ79zit5ub16XK7x-vLtfLtbYMgkdtplhIs0kEYmjABL4nHFu1JxknCmb0NRAQlRM40wlVgoVq3R4gZhTKWNu2RRdjrm5KXXri8r4nW5MoVeLtd7fhqYMCBNbMrAXIzt0-Oxd6HRVBOvKfb-mD5rEMBgkIoYBpSP6o8C77D-bgN571n-etVR69My-Ac5Lcac</recordid><startdate>20140512</startdate><enddate>20140512</enddate><creator>Ni, Yuxiang</creator><creator>Kosevich, Yuriy A.</creator><creator>Xiong, Shiyun</creator><creator>Chalopin, Yann</creator><creator>Volz, Sebastian</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1229-0995</orcidid></search><sort><creationdate>20140512</creationdate><title>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</title><author>Ni, Yuxiang ; Kosevich, Yuriy A. ; Xiong, Shiyun ; Chalopin, Yann ; Volz, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed Matter</topic><topic>Deformation mechanisms</topic><topic>Engineering Sciences</topic><topic>Formability</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Silicon dioxide</topic><topic>Thermal resistance</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Kosevich, Yuriy A.</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chalopin, Yann</creatorcontrib><creatorcontrib>Volz, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Yuxiang</au><au>Kosevich, Yuriy A.</au><au>Xiong, Shiyun</au><au>Chalopin, Yann</au><au>Volz, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-05-12</date><risdate>2014</risdate><volume>89</volume><issue>20</issue><artnum>205413</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.89.205413</doi><orcidid>https://orcid.org/0000-0002-1229-0995</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205413
issn 1098-0121
1550-235X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01230135v1
source American Physical Society Journals
subjects Condensed Matter
Deformation mechanisms
Engineering Sciences
Formability
Graphene
Heat transfer
Materials Science
Mathematical models
Mechanics
Micro and nanotechnologies
Microelectronics
Phonons
Physics
Silicon dioxide
Thermal resistance
Thermics
title Substrate-induced cross-plane thermal propagative modes in few-layer graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate-induced%20cross-plane%20thermal%20propagative%20modes%20in%20few-layer%20graphene&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Ni,%20Yuxiang&rft.date=2014-05-12&rft.volume=89&rft.issue=20&rft.artnum=205413&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.89.205413&rft_dat=%3Cproquest_hal_p%3E1701031570%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701031570&rft_id=info:pmid/&rfr_iscdi=true