Substrate-induced cross-plane thermal propagative modes in few-layer graphene
We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205413 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 89 |
creator | Ni, Yuxiang Kosevich, Yuriy A. Xiong, Shiyun Chalopin, Yann Volz, Sebastian |
description | We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart. |
doi_str_mv | 10.1103/PhysRevB.89.205413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01230135v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701031570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA6yyhIXL-NXYy1IBRSoC8ZDYWY7jNEF5YSdF_XtSAqxmNHN0pXsQOicwIwTY1VO-C89uez2TakZBcMIO0IQIAZgy8X447KAkBkLJMToJ4QOAcMXpBD289EnovOkcLuq0ty6NrG9CwG1pahd1ufOVKaPWN63ZmK7YuqhqUheioo4y94VLs3M-2njT5q52p-goM2VwZ79zit5ub16XK7x-vLtfLtbYMgkdtplhIs0kEYmjABL4nHFu1JxknCmb0NRAQlRM40wlVgoVq3R4gZhTKWNu2RRdjrm5KXXri8r4nW5MoVeLtd7fhqYMCBNbMrAXIzt0-Oxd6HRVBOvKfb-mD5rEMBgkIoYBpSP6o8C77D-bgN571n-etVR69My-Ac5Lcac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1701031570</pqid></control><display><type>article</type><title>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</title><source>American Physical Society Journals</source><creator>Ni, Yuxiang ; Kosevich, Yuriy A. ; Xiong, Shiyun ; Chalopin, Yann ; Volz, Sebastian</creator><creatorcontrib>Ni, Yuxiang ; Kosevich, Yuriy A. ; Xiong, Shiyun ; Chalopin, Yann ; Volz, Sebastian</creatorcontrib><description>We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.89.205413</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Deformation mechanisms ; Engineering Sciences ; Formability ; Graphene ; Heat transfer ; Materials Science ; Mathematical models ; Mechanics ; Micro and nanotechnologies ; Microelectronics ; Phonons ; Physics ; Silicon dioxide ; Thermal resistance ; Thermics</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205413</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</citedby><cites>FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</cites><orcidid>0000-0002-1229-0995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01230135$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Kosevich, Yuriy A.</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chalopin, Yann</creatorcontrib><creatorcontrib>Volz, Sebastian</creatorcontrib><title>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</title><title>Physical review. B, Condensed matter and materials physics</title><description>We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.</description><subject>Condensed Matter</subject><subject>Deformation mechanisms</subject><subject>Engineering Sciences</subject><subject>Formability</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Phonons</subject><subject>Physics</subject><subject>Silicon dioxide</subject><subject>Thermal resistance</subject><subject>Thermics</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA6yyhIXL-NXYy1IBRSoC8ZDYWY7jNEF5YSdF_XtSAqxmNHN0pXsQOicwIwTY1VO-C89uez2TakZBcMIO0IQIAZgy8X447KAkBkLJMToJ4QOAcMXpBD289EnovOkcLuq0ty6NrG9CwG1pahd1ufOVKaPWN63ZmK7YuqhqUheioo4y94VLs3M-2njT5q52p-goM2VwZ79zit5ub16XK7x-vLtfLtbYMgkdtplhIs0kEYmjABL4nHFu1JxknCmb0NRAQlRM40wlVgoVq3R4gZhTKWNu2RRdjrm5KXXri8r4nW5MoVeLtd7fhqYMCBNbMrAXIzt0-Oxd6HRVBOvKfb-mD5rEMBgkIoYBpSP6o8C77D-bgN571n-etVR69My-Ac5Lcac</recordid><startdate>20140512</startdate><enddate>20140512</enddate><creator>Ni, Yuxiang</creator><creator>Kosevich, Yuriy A.</creator><creator>Xiong, Shiyun</creator><creator>Chalopin, Yann</creator><creator>Volz, Sebastian</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1229-0995</orcidid></search><sort><creationdate>20140512</creationdate><title>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</title><author>Ni, Yuxiang ; Kosevich, Yuriy A. ; Xiong, Shiyun ; Chalopin, Yann ; Volz, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cfa35df815be2008046344a961f439cb2da0b19727f9bc85979d1f405628874c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed Matter</topic><topic>Deformation mechanisms</topic><topic>Engineering Sciences</topic><topic>Formability</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Phonons</topic><topic>Physics</topic><topic>Silicon dioxide</topic><topic>Thermal resistance</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yuxiang</creatorcontrib><creatorcontrib>Kosevich, Yuriy A.</creatorcontrib><creatorcontrib>Xiong, Shiyun</creatorcontrib><creatorcontrib>Chalopin, Yann</creatorcontrib><creatorcontrib>Volz, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Yuxiang</au><au>Kosevich, Yuriy A.</au><au>Xiong, Shiyun</au><au>Chalopin, Yann</au><au>Volz, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate-induced cross-plane thermal propagative modes in few-layer graphene</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-05-12</date><risdate>2014</risdate><volume>89</volume><issue>20</issue><artnum>205413</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>We report the layer-number dependence of the averaged interlayer thermal resistances (R sub(int)) of the suspended and supported few-layer graphene (FLG), simulated by equilibrium molecular dynamics (EMD). The existence of a silicon dioxide substrate significantly decreases the R sub(int) of FLG at low layer number. We use the model of long-wavelength dynamics of a nanolayer adsorbed on a deformable crystal [Kosevich and Syrkin, Phys. Lett. A 135, 298 (1989) (http://dx.doi.org/10.1016/03759601(89)901187)] to explain the appearance of the substrate-induced gaps in the FLG dispersion curves and phonon radiation into the deformable substrate from these gap modes. The enhanced thermal conductance in the cross-plane direction is ascribed to the phonon radiation from FLG into the deformable substrate, which partially transfers the flow of phonon energy in FLG from the in-plane to the cross-plane direction and to the substrate. To confirm this, we calculate the cross-plane thermal resistance of three-layer graphene supported by an effective SiO sub(2) substrate in which atomic masses are increased by a factor of 1000. This makes the substrate almost immovable and suppresses phonon radiation from the supported FLG by complete phonon reflection at the interface. The cross-plane thermal resistance of three-layer graphene supported on such a substrate is found to be the same as its suspended counterpart.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.89.205413</doi><orcidid>https://orcid.org/0000-0002-1229-0995</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2014-05, Vol.89 (20), Article 205413 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01230135v1 |
source | American Physical Society Journals |
subjects | Condensed Matter Deformation mechanisms Engineering Sciences Formability Graphene Heat transfer Materials Science Mathematical models Mechanics Micro and nanotechnologies Microelectronics Phonons Physics Silicon dioxide Thermal resistance Thermics |
title | Substrate-induced cross-plane thermal propagative modes in few-layer graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate-induced%20cross-plane%20thermal%20propagative%20modes%20in%20few-layer%20graphene&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Ni,%20Yuxiang&rft.date=2014-05-12&rft.volume=89&rft.issue=20&rft.artnum=205413&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.89.205413&rft_dat=%3Cproquest_hal_p%3E1701031570%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1701031570&rft_id=info:pmid/&rfr_iscdi=true |