Dynamics of non-circular finite-release gravity currents
The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work of Zgheib et al. (Theor. Comput. Fluid Dyn., vol. 28, 2014, pp. 521–529) which demonstrated that gravity currents...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2015-11, Vol.783, p.344-378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | |
container_start_page | 344 |
container_title | Journal of fluid mechanics |
container_volume | 783 |
creator | Zgheib, N. Bonometti, T. Balachandar, S. |
description | The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work of Zgheib et al. (Theor. Comput. Fluid Dyn., vol. 28, 2014, pp. 521–529) which demonstrated that gravity currents initiating from non-axisymmetric cross-sectional geometries do not become axisymmetric, nor do they retain their initial shape during the slumping and inertial phases of spreading, we show that such non-axisymmetric currents eventually reach a self-similar regime during which (i) the local front propagation scales as
$t^{1/2}$
as in circular releases and (ii) the non-axisymmetric front has a self-similar shape that primarily depends on the aspect ratio of the initial release. Complementary experiments of non-Boussinesq currents and top-spreading currents suggest that this self-similar dynamics is independent of the density ratio, vertical aspect ratio, wall friction and Reynolds number
$\mathit{Re}$
, provided the last is large, i.e.
$\mathit{Re}\geqslant O(10^{4})$
. The local instantaneous front Froude number obtained from the fully resolved simulations is compared to existing models of Froude functions. The recently reported extended box model is capable of capturing the dynamics of such non-axisymmetric flows. Here we use the extended box model to propose a relation for the self-similar horizontal aspect ratio
${\it\chi}_{\infty }$
of the propagating front as a function of the initial horizontal aspect ratio
${\it\chi}_{0}$
, namely
${\it\chi}_{\infty }=1+(\ln {\it\chi}_{0})/3$
. The experimental and numerical results are in good agreement with the proposed relation. |
doi_str_mv | 10.1017/jfm.2015.580 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01227870v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2015_580</cupid><sourcerecordid>4321457203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-3b565fa406f8ba0ade4e16334f6e86d26f8e295d94d14a60ff6ff7ee000947e53</originalsourceid><addsrcrecordid>eNptkMtKw0AUhgdRsFZ3PkDAlWDimUtmkmWplwoFN7oepsmZOiWXOpMU8jY-i09mSou4cHXg5_t_Dh8h1xQSClTdb2ydMKBpkmZwQiZUyDxWUqSnZALAWEwpg3NyEcIGgHLI1YTkD0NjaleEqLVR0zZx4XzRV8ZH1jWuw9hjhSZgtPZm57rh-6vovcemC5fkzJoq4NXxTsn70-PbfBEvX59f5rNlXHAlupivUplaI0DabGXAlCiQSs6FlZjJko0xsjwtc1FSYSRYK61ViACQC4Upn5Lbw-6HqfTWu9r4QbfG6cVsqfcZUMZUpmBHR_bmwG59-9lj6PSm7X0zvqdplgnOQfBspO4OVOHbEDza31kKei9SjyL1XqQeRY54csRNvfKuXOOf1f8KPzB7dM4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884330438</pqid></control><display><type>article</type><title>Dynamics of non-circular finite-release gravity currents</title><source>Cambridge Journals</source><creator>Zgheib, N. ; Bonometti, T. ; Balachandar, S.</creator><creatorcontrib>Zgheib, N. ; Bonometti, T. ; Balachandar, S.</creatorcontrib><description>The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work of Zgheib et al. (Theor. Comput. Fluid Dyn., vol. 28, 2014, pp. 521–529) which demonstrated that gravity currents initiating from non-axisymmetric cross-sectional geometries do not become axisymmetric, nor do they retain their initial shape during the slumping and inertial phases of spreading, we show that such non-axisymmetric currents eventually reach a self-similar regime during which (i) the local front propagation scales as
$t^{1/2}$
as in circular releases and (ii) the non-axisymmetric front has a self-similar shape that primarily depends on the aspect ratio of the initial release. Complementary experiments of non-Boussinesq currents and top-spreading currents suggest that this self-similar dynamics is independent of the density ratio, vertical aspect ratio, wall friction and Reynolds number
$\mathit{Re}$
, provided the last is large, i.e.
$\mathit{Re}\geqslant O(10^{4})$
. The local instantaneous front Froude number obtained from the fully resolved simulations is compared to existing models of Froude functions. The recently reported extended box model is capable of capturing the dynamics of such non-axisymmetric flows. Here we use the extended box model to propose a relation for the self-similar horizontal aspect ratio
${\it\chi}_{\infty }$
of the propagating front as a function of the initial horizontal aspect ratio
${\it\chi}_{0}$
, namely
${\it\chi}_{\infty }=1+(\ln {\it\chi}_{0})/3$
. The experimental and numerical results are in good agreement with the proposed relation.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2015.580</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Fluid mechanics ; Froude number ; Gravity ; Mechanics ; Numerical analysis ; Physics ; Propagation</subject><ispartof>Journal of fluid mechanics, 2015-11, Vol.783, p.344-378</ispartof><rights>2015 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-3b565fa406f8ba0ade4e16334f6e86d26f8e295d94d14a60ff6ff7ee000947e53</citedby><cites>FETCH-LOGICAL-c374t-3b565fa406f8ba0ade4e16334f6e86d26f8e295d94d14a60ff6ff7ee000947e53</cites><orcidid>0000-0001-6869-553X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112015005807/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27923,27924,55627</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01227870$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zgheib, N.</creatorcontrib><creatorcontrib>Bonometti, T.</creatorcontrib><creatorcontrib>Balachandar, S.</creatorcontrib><title>Dynamics of non-circular finite-release gravity currents</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work of Zgheib et al. (Theor. Comput. Fluid Dyn., vol. 28, 2014, pp. 521–529) which demonstrated that gravity currents initiating from non-axisymmetric cross-sectional geometries do not become axisymmetric, nor do they retain their initial shape during the slumping and inertial phases of spreading, we show that such non-axisymmetric currents eventually reach a self-similar regime during which (i) the local front propagation scales as
$t^{1/2}$
as in circular releases and (ii) the non-axisymmetric front has a self-similar shape that primarily depends on the aspect ratio of the initial release. Complementary experiments of non-Boussinesq currents and top-spreading currents suggest that this self-similar dynamics is independent of the density ratio, vertical aspect ratio, wall friction and Reynolds number
$\mathit{Re}$
, provided the last is large, i.e.
$\mathit{Re}\geqslant O(10^{4})$
. The local instantaneous front Froude number obtained from the fully resolved simulations is compared to existing models of Froude functions. The recently reported extended box model is capable of capturing the dynamics of such non-axisymmetric flows. Here we use the extended box model to propose a relation for the self-similar horizontal aspect ratio
${\it\chi}_{\infty }$
of the propagating front as a function of the initial horizontal aspect ratio
${\it\chi}_{0}$
, namely
${\it\chi}_{\infty }=1+(\ln {\it\chi}_{0})/3$
. The experimental and numerical results are in good agreement with the proposed relation.</description><subject>Fluid mechanics</subject><subject>Froude number</subject><subject>Gravity</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Propagation</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtKw0AUhgdRsFZ3PkDAlWDimUtmkmWplwoFN7oepsmZOiWXOpMU8jY-i09mSou4cHXg5_t_Dh8h1xQSClTdb2ydMKBpkmZwQiZUyDxWUqSnZALAWEwpg3NyEcIGgHLI1YTkD0NjaleEqLVR0zZx4XzRV8ZH1jWuw9hjhSZgtPZm57rh-6vovcemC5fkzJoq4NXxTsn70-PbfBEvX59f5rNlXHAlupivUplaI0DabGXAlCiQSs6FlZjJko0xsjwtc1FSYSRYK61ViACQC4Upn5Lbw-6HqfTWu9r4QbfG6cVsqfcZUMZUpmBHR_bmwG59-9lj6PSm7X0zvqdplgnOQfBspO4OVOHbEDza31kKei9SjyL1XqQeRY54csRNvfKuXOOf1f8KPzB7dM4</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Zgheib, N.</creator><creator>Bonometti, T.</creator><creator>Balachandar, S.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6869-553X</orcidid></search><sort><creationdate>20151125</creationdate><title>Dynamics of non-circular finite-release gravity currents</title><author>Zgheib, N. ; Bonometti, T. ; Balachandar, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-3b565fa406f8ba0ade4e16334f6e86d26f8e295d94d14a60ff6ff7ee000947e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fluid mechanics</topic><topic>Froude number</topic><topic>Gravity</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zgheib, N.</creatorcontrib><creatorcontrib>Bonometti, T.</creatorcontrib><creatorcontrib>Balachandar, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zgheib, N.</au><au>Bonometti, T.</au><au>Balachandar, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of non-circular finite-release gravity currents</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2015-11-25</date><risdate>2015</risdate><volume>783</volume><spage>344</spage><epage>378</epage><pages>344-378</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work of Zgheib et al. (Theor. Comput. Fluid Dyn., vol. 28, 2014, pp. 521–529) which demonstrated that gravity currents initiating from non-axisymmetric cross-sectional geometries do not become axisymmetric, nor do they retain their initial shape during the slumping and inertial phases of spreading, we show that such non-axisymmetric currents eventually reach a self-similar regime during which (i) the local front propagation scales as
$t^{1/2}$
as in circular releases and (ii) the non-axisymmetric front has a self-similar shape that primarily depends on the aspect ratio of the initial release. Complementary experiments of non-Boussinesq currents and top-spreading currents suggest that this self-similar dynamics is independent of the density ratio, vertical aspect ratio, wall friction and Reynolds number
$\mathit{Re}$
, provided the last is large, i.e.
$\mathit{Re}\geqslant O(10^{4})$
. The local instantaneous front Froude number obtained from the fully resolved simulations is compared to existing models of Froude functions. The recently reported extended box model is capable of capturing the dynamics of such non-axisymmetric flows. Here we use the extended box model to propose a relation for the self-similar horizontal aspect ratio
${\it\chi}_{\infty }$
of the propagating front as a function of the initial horizontal aspect ratio
${\it\chi}_{0}$
, namely
${\it\chi}_{\infty }=1+(\ln {\it\chi}_{0})/3$
. The experimental and numerical results are in good agreement with the proposed relation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2015.580</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-6869-553X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2015-11, Vol.783, p.344-378 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01227870v1 |
source | Cambridge Journals |
subjects | Fluid mechanics Froude number Gravity Mechanics Numerical analysis Physics Propagation |
title | Dynamics of non-circular finite-release gravity currents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20non-circular%20finite-release%20gravity%C2%A0currents&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zgheib,%20N.&rft.date=2015-11-25&rft.volume=783&rft.spage=344&rft.epage=378&rft.pages=344-378&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2015.580&rft_dat=%3Cproquest_hal_p%3E4321457203%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884330438&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2015_580&rfr_iscdi=true |