Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis

The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-12, Vol.108 (51), p.E1423-E1432
Hauptverfasser: Donia, Mohamed S, Fricke, W. Florian, Partensky, Frédéric, Cox, James, Elshahawi, Sherif I, White, James R, Phillippy, Adam M, Schatz, Michael C, Piel, Joern, Haygood, Margo G, Ravel, Jacques, Schmidt, Eric W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1432
container_issue 51
container_start_page E1423
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Donia, Mohamed S
Fricke, W. Florian
Partensky, Frédéric
Cox, James
Elshahawi, Sherif I
White, James R
Phillippy, Adam M
Schatz, Michael C
Piel, Joern
Haygood, Margo G
Ravel, Jacques
Schmidt, Eric W
description The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules.
doi_str_mv 10.1073/pnas.1111712108
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01218508v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1758239839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-30a989143903a85c6857e6413109715d869a78ebc8b4c6a27bb70bafd11da263</originalsourceid><addsrcrecordid>eNqFks9vFCEUx4nR2Fo9e1PiRT1My-PHDFyaNJtqTTbRxHomDMPu0szACjON-9_LuGurPSgXCHze9z3e-yL0EsgpkIadbYPJp1BWAxSIfISOgSioaq7IY3RMCG0qySk_Qs9yviGEKCHJU3REKVCmODtGdhGHbe9-4MHbFFsfB4en0LnU73xY4-xsDJ1JO2xCh7fJD_N5cKNpY-_zgH3A48bhcQremtFVX1K0mz6mGHDeDUUv-_wcPVmZPrsXh_0EXX-4vF5cVcvPHz8tLpaVFbUcK0aMkgo4U4QZKWwtReNqDqx8qQHRyVqZRrrWypbb2tCmbRvSmlUH0BlasxN0vpfdTu3gOuvCmEyvD0XraLz--yX4jV7HW82oAGCiCLzfC2wehF1dLPV8R0qTpSDyFgr79pAsxe-Ty6MefLau701wccpaAeW0kVIW8t0_SWiELMOQTP0fFWVoghNOC_rmAXoTpxRKe3-lFoJKUqCzPVRGm3Nyq7tfAdGzf_TsH33vnxLx6s8e3vG_DVMAfADmyHs5qQXoSyiVFeT1HlmZqM06-ay_faUEePFfrWbiJ9g-1KU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912455280</pqid></control><display><type>article</type><title>Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Donia, Mohamed S ; Fricke, W. Florian ; Partensky, Frédéric ; Cox, James ; Elshahawi, Sherif I ; White, James R ; Phillippy, Adam M ; Schatz, Michael C ; Piel, Joern ; Haygood, Margo G ; Ravel, Jacques ; Schmidt, Eric W</creator><creatorcontrib>Donia, Mohamed S ; Fricke, W. Florian ; Partensky, Frédéric ; Cox, James ; Elshahawi, Sherif I ; White, James R ; Phillippy, Adam M ; Schatz, Michael C ; Piel, Joern ; Haygood, Margo G ; Ravel, Jacques ; Schmidt, Eric W</creatorcontrib><description>The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1111712108</identifier><identifier>PMID: 22123943</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; bacteria ; biofuels ; Biological Sciences ; Cyanobacteria ; Environmental Sciences ; Gene expression ; genes ; Genome ; Genomes ; Genomics ; Gram-negative bacteria ; Life Sciences ; lipid composition ; Lissoclinum patella ; Metabolism ; Metagenome - physiology ; Metagenomics ; Models, Biological ; Models, Genetic ; Molecular Sequence Data ; nutrition ; Photosynthesis ; Phylogeny ; PNAS Plus ; Prochloron ; Prochloron - metabolism ; Prochloron didemni ; RNA, Ribosomal, 16S - metabolism ; secondary metabolites ; Sequence Analysis, DNA ; sterols ; Symbiosis ; Urochordata</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-12, Vol.108 (51), p.E1423-E1432</ispartof><rights>Copyright National Academy of Sciences Dec 20, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-30a989143903a85c6857e6413109715d869a78ebc8b4c6a27bb70bafd11da263</citedby><cites>FETCH-LOGICAL-c568t-30a989143903a85c6857e6413109715d869a78ebc8b4c6a27bb70bafd11da263</cites><orcidid>0000-0003-1274-4050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251135/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251135/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22123943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01218508$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Donia, Mohamed S</creatorcontrib><creatorcontrib>Fricke, W. Florian</creatorcontrib><creatorcontrib>Partensky, Frédéric</creatorcontrib><creatorcontrib>Cox, James</creatorcontrib><creatorcontrib>Elshahawi, Sherif I</creatorcontrib><creatorcontrib>White, James R</creatorcontrib><creatorcontrib>Phillippy, Adam M</creatorcontrib><creatorcontrib>Schatz, Michael C</creatorcontrib><creatorcontrib>Piel, Joern</creatorcontrib><creatorcontrib>Haygood, Margo G</creatorcontrib><creatorcontrib>Ravel, Jacques</creatorcontrib><creatorcontrib>Schmidt, Eric W</creatorcontrib><title>Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules.</description><subject>Animals</subject><subject>bacteria</subject><subject>biofuels</subject><subject>Biological Sciences</subject><subject>Cyanobacteria</subject><subject>Environmental Sciences</subject><subject>Gene expression</subject><subject>genes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Gram-negative bacteria</subject><subject>Life Sciences</subject><subject>lipid composition</subject><subject>Lissoclinum patella</subject><subject>Metabolism</subject><subject>Metagenome - physiology</subject><subject>Metagenomics</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>nutrition</subject><subject>Photosynthesis</subject><subject>Phylogeny</subject><subject>PNAS Plus</subject><subject>Prochloron</subject><subject>Prochloron - metabolism</subject><subject>Prochloron didemni</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>secondary metabolites</subject><subject>Sequence Analysis, DNA</subject><subject>sterols</subject><subject>Symbiosis</subject><subject>Urochordata</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9vFCEUx4nR2Fo9e1PiRT1My-PHDFyaNJtqTTbRxHomDMPu0szACjON-9_LuGurPSgXCHze9z3e-yL0EsgpkIadbYPJp1BWAxSIfISOgSioaq7IY3RMCG0qySk_Qs9yviGEKCHJU3REKVCmODtGdhGHbe9-4MHbFFsfB4en0LnU73xY4-xsDJ1JO2xCh7fJD_N5cKNpY-_zgH3A48bhcQremtFVX1K0mz6mGHDeDUUv-_wcPVmZPrsXh_0EXX-4vF5cVcvPHz8tLpaVFbUcK0aMkgo4U4QZKWwtReNqDqx8qQHRyVqZRrrWypbb2tCmbRvSmlUH0BlasxN0vpfdTu3gOuvCmEyvD0XraLz--yX4jV7HW82oAGCiCLzfC2wehF1dLPV8R0qTpSDyFgr79pAsxe-Ty6MefLau701wccpaAeW0kVIW8t0_SWiELMOQTP0fFWVoghNOC_rmAXoTpxRKe3-lFoJKUqCzPVRGm3Nyq7tfAdGzf_TsH33vnxLx6s8e3vG_DVMAfADmyHs5qQXoSyiVFeT1HlmZqM06-ay_faUEePFfrWbiJ9g-1KU</recordid><startdate>20111220</startdate><enddate>20111220</enddate><creator>Donia, Mohamed S</creator><creator>Fricke, W. Florian</creator><creator>Partensky, Frédéric</creator><creator>Cox, James</creator><creator>Elshahawi, Sherif I</creator><creator>White, James R</creator><creator>Phillippy, Adam M</creator><creator>Schatz, Michael C</creator><creator>Piel, Joern</creator><creator>Haygood, Margo G</creator><creator>Ravel, Jacques</creator><creator>Schmidt, Eric W</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>NATL ACAD SCIENCES</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7T7</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1274-4050</orcidid></search><sort><creationdate>20111220</creationdate><title>Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis</title><author>Donia, Mohamed S ; Fricke, W. Florian ; Partensky, Frédéric ; Cox, James ; Elshahawi, Sherif I ; White, James R ; Phillippy, Adam M ; Schatz, Michael C ; Piel, Joern ; Haygood, Margo G ; Ravel, Jacques ; Schmidt, Eric W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-30a989143903a85c6857e6413109715d869a78ebc8b4c6a27bb70bafd11da263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>bacteria</topic><topic>biofuels</topic><topic>Biological Sciences</topic><topic>Cyanobacteria</topic><topic>Environmental Sciences</topic><topic>Gene expression</topic><topic>genes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Gram-negative bacteria</topic><topic>Life Sciences</topic><topic>lipid composition</topic><topic>Lissoclinum patella</topic><topic>Metabolism</topic><topic>Metagenome - physiology</topic><topic>Metagenomics</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>nutrition</topic><topic>Photosynthesis</topic><topic>Phylogeny</topic><topic>PNAS Plus</topic><topic>Prochloron</topic><topic>Prochloron - metabolism</topic><topic>Prochloron didemni</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>secondary metabolites</topic><topic>Sequence Analysis, DNA</topic><topic>sterols</topic><topic>Symbiosis</topic><topic>Urochordata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donia, Mohamed S</creatorcontrib><creatorcontrib>Fricke, W. Florian</creatorcontrib><creatorcontrib>Partensky, Frédéric</creatorcontrib><creatorcontrib>Cox, James</creatorcontrib><creatorcontrib>Elshahawi, Sherif I</creatorcontrib><creatorcontrib>White, James R</creatorcontrib><creatorcontrib>Phillippy, Adam M</creatorcontrib><creatorcontrib>Schatz, Michael C</creatorcontrib><creatorcontrib>Piel, Joern</creatorcontrib><creatorcontrib>Haygood, Margo G</creatorcontrib><creatorcontrib>Ravel, Jacques</creatorcontrib><creatorcontrib>Schmidt, Eric W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donia, Mohamed S</au><au>Fricke, W. Florian</au><au>Partensky, Frédéric</au><au>Cox, James</au><au>Elshahawi, Sherif I</au><au>White, James R</au><au>Phillippy, Adam M</au><au>Schatz, Michael C</au><au>Piel, Joern</au><au>Haygood, Margo G</au><au>Ravel, Jacques</au><au>Schmidt, Eric W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-12-20</date><risdate>2011</risdate><volume>108</volume><issue>51</issue><spage>E1423</spage><epage>E1432</epage><pages>E1423-E1432</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22123943</pmid><doi>10.1073/pnas.1111712108</doi><orcidid>https://orcid.org/0000-0003-1274-4050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-12, Vol.108 (51), p.E1423-E1432
issn 0027-8424
1091-6490
language eng
recordid cdi_hal_primary_oai_HAL_hal_01218508v1
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
bacteria
biofuels
Biological Sciences
Cyanobacteria
Environmental Sciences
Gene expression
genes
Genome
Genomes
Genomics
Gram-negative bacteria
Life Sciences
lipid composition
Lissoclinum patella
Metabolism
Metagenome - physiology
Metagenomics
Models, Biological
Models, Genetic
Molecular Sequence Data
nutrition
Photosynthesis
Phylogeny
PNAS Plus
Prochloron
Prochloron - metabolism
Prochloron didemni
RNA, Ribosomal, 16S - metabolism
secondary metabolites
Sequence Analysis, DNA
sterols
Symbiosis
Urochordata
title Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20microbiome%20underlying%20secondary%20and%20primary%20metabolism%20in%20the%20tunicate-Prochloron%20symbiosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Donia,%20Mohamed%20S&rft.date=2011-12-20&rft.volume=108&rft.issue=51&rft.spage=E1423&rft.epage=E1432&rft.pages=E1423-E1432&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1111712108&rft_dat=%3Cproquest_hal_p%3E1758239839%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912455280&rft_id=info:pmid/22123943&rfr_iscdi=true