Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams
A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time effi...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2014-09, Vol.279, p.1-28 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 279 |
creator | Adam, C. Bouabdallah, S. Zarroug, M. Maitournam, H. |
description | A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements.
•We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment. |
doi_str_mv | 10.1016/j.cma.2014.06.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01214738v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782514002096</els_id><sourcerecordid>1642254579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVJoJtNHiA3HVuoHY0k23JzSpYmWVhoD-1ZyNrxVlvb2kryQt6-Wjb0mLkMDN83MPMTcgusBAb13b60oyk5A1myumRcfCALUE1bcBDqgiwYk1XRKF59JFcx7lkuBXxBduvxEPwRt3SaRwzOmoG6KeEumOT8RHsf6ODtHzftaApo0ohTygR10e_Qj5iyQ2MKs01zyDIOeELiF_rDhETXX-kjmjFek8veDBFv3vqS_Hr69nP1Umy-P69XD5vCilqmQlouLEOEtu9q1jWyQ8sM1gKURNZDJYQSdtv0TSUFRyXaXnVtVXetMhJ4I5bk83nvbzPoQ3CjCa_aG6dfHjb6NGPAQTZCHSGzn85s_sDfGWPSo4sWh8FM6OeooZacV7Jq2ozCGbXBxxiw_78bmD4FoPc6B6BPAWhW6xxAdu7PDuZ7jw6DjtbhZHHrAtqkt969Y_8DRumOBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642254579</pqid></control><display><type>article</type><title>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Adam, C. ; Bouabdallah, S. ; Zarroug, M. ; Maitournam, H.</creator><creatorcontrib>Adam, C. ; Bouabdallah, S. ; Zarroug, M. ; Maitournam, H.</creatorcontrib><description>A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements.
•We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.06.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-splines/NURBS ; Cantilever beams ; Engineering Sciences ; Finite element method ; Isogeometric analysis ; Locking ; Mathematical analysis ; Mathematical models ; Membranes ; Numerical locking ; Selective reduced integration ; Shear ; Structural members ; Timoshenko beam</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-09, Vol.279, p.1-28</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</citedby><cites>FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2014.06.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01214738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Adam, C.</creatorcontrib><creatorcontrib>Bouabdallah, S.</creatorcontrib><creatorcontrib>Zarroug, M.</creatorcontrib><creatorcontrib>Maitournam, H.</creatorcontrib><title>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</title><title>Computer methods in applied mechanics and engineering</title><description>A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements.
•We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.</description><subject>[formula omitted]-splines/NURBS</subject><subject>Cantilever beams</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Isogeometric analysis</subject><subject>Locking</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Numerical locking</subject><subject>Selective reduced integration</subject><subject>Shear</subject><subject>Structural members</subject><subject>Timoshenko beam</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVJoJtNHiA3HVuoHY0k23JzSpYmWVhoD-1ZyNrxVlvb2kryQt6-Wjb0mLkMDN83MPMTcgusBAb13b60oyk5A1myumRcfCALUE1bcBDqgiwYk1XRKF59JFcx7lkuBXxBduvxEPwRt3SaRwzOmoG6KeEumOT8RHsf6ODtHzftaApo0ohTygR10e_Qj5iyQ2MKs01zyDIOeELiF_rDhETXX-kjmjFek8veDBFv3vqS_Hr69nP1Umy-P69XD5vCilqmQlouLEOEtu9q1jWyQ8sM1gKURNZDJYQSdtv0TSUFRyXaXnVtVXetMhJ4I5bk83nvbzPoQ3CjCa_aG6dfHjb6NGPAQTZCHSGzn85s_sDfGWPSo4sWh8FM6OeooZacV7Jq2ozCGbXBxxiw_78bmD4FoPc6B6BPAWhW6xxAdu7PDuZ7jw6DjtbhZHHrAtqkt969Y_8DRumOBg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Adam, C.</creator><creator>Bouabdallah, S.</creator><creator>Zarroug, M.</creator><creator>Maitournam, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20140901</creationdate><title>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</title><author>Adam, C. ; Bouabdallah, S. ; Zarroug, M. ; Maitournam, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>[formula omitted]-splines/NURBS</topic><topic>Cantilever beams</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Isogeometric analysis</topic><topic>Locking</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Numerical locking</topic><topic>Selective reduced integration</topic><topic>Shear</topic><topic>Structural members</topic><topic>Timoshenko beam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, C.</creatorcontrib><creatorcontrib>Bouabdallah, S.</creatorcontrib><creatorcontrib>Zarroug, M.</creatorcontrib><creatorcontrib>Maitournam, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, C.</au><au>Bouabdallah, S.</au><au>Zarroug, M.</au><au>Maitournam, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>279</volume><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements.
•We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.06.023</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2014-09, Vol.279, p.1-28 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01214738v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | [formula omitted]-splines/NURBS Cantilever beams Engineering Sciences Finite element method Isogeometric analysis Locking Mathematical analysis Mathematical models Membranes Numerical locking Selective reduced integration Shear Structural members Timoshenko beam |
title | Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20numerical%20integration%20for%20locking%20treatment%20in%20isogeometric%20structural%20elements,%20Part%20I:%20Beams&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Adam,%20C.&rft.date=2014-09-01&rft.volume=279&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.06.023&rft_dat=%3Cproquest_hal_p%3E1642254579%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642254579&rft_id=info:pmid/&rft_els_id=S0045782514002096&rfr_iscdi=true |