Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams

A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2014-09, Vol.279, p.1-28
Hauptverfasser: Adam, C., Bouabdallah, S., Zarroug, M., Maitournam, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue
container_start_page 1
container_title Computer methods in applied mechanics and engineering
container_volume 279
creator Adam, C.
Bouabdallah, S.
Zarroug, M.
Maitournam, H.
description A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements. •We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.
doi_str_mv 10.1016/j.cma.2014.06.023
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01214738v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782514002096</els_id><sourcerecordid>1642254579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVJoJtNHiA3HVuoHY0k23JzSpYmWVhoD-1ZyNrxVlvb2kryQt6-Wjb0mLkMDN83MPMTcgusBAb13b60oyk5A1myumRcfCALUE1bcBDqgiwYk1XRKF59JFcx7lkuBXxBduvxEPwRt3SaRwzOmoG6KeEumOT8RHsf6ODtHzftaApo0ohTygR10e_Qj5iyQ2MKs01zyDIOeELiF_rDhETXX-kjmjFek8veDBFv3vqS_Hr69nP1Umy-P69XD5vCilqmQlouLEOEtu9q1jWyQ8sM1gKURNZDJYQSdtv0TSUFRyXaXnVtVXetMhJ4I5bk83nvbzPoQ3CjCa_aG6dfHjb6NGPAQTZCHSGzn85s_sDfGWPSo4sWh8FM6OeooZacV7Jq2ozCGbXBxxiw_78bmD4FoPc6B6BPAWhW6xxAdu7PDuZ7jw6DjtbhZHHrAtqkt969Y_8DRumOBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642254579</pqid></control><display><type>article</type><title>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Adam, C. ; Bouabdallah, S. ; Zarroug, M. ; Maitournam, H.</creator><creatorcontrib>Adam, C. ; Bouabdallah, S. ; Zarroug, M. ; Maitournam, H.</creatorcontrib><description>A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements. •We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2014.06.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-splines/NURBS ; Cantilever beams ; Engineering Sciences ; Finite element method ; Isogeometric analysis ; Locking ; Mathematical analysis ; Mathematical models ; Membranes ; Numerical locking ; Selective reduced integration ; Shear ; Structural members ; Timoshenko beam</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-09, Vol.279, p.1-28</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</citedby><cites>FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2014.06.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01214738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Adam, C.</creatorcontrib><creatorcontrib>Bouabdallah, S.</creatorcontrib><creatorcontrib>Zarroug, M.</creatorcontrib><creatorcontrib>Maitournam, H.</creatorcontrib><title>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</title><title>Computer methods in applied mechanics and engineering</title><description>A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements. •We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.</description><subject>[formula omitted]-splines/NURBS</subject><subject>Cantilever beams</subject><subject>Engineering Sciences</subject><subject>Finite element method</subject><subject>Isogeometric analysis</subject><subject>Locking</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Numerical locking</subject><subject>Selective reduced integration</subject><subject>Shear</subject><subject>Structural members</subject><subject>Timoshenko beam</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVJoJtNHiA3HVuoHY0k23JzSpYmWVhoD-1ZyNrxVlvb2kryQt6-Wjb0mLkMDN83MPMTcgusBAb13b60oyk5A1myumRcfCALUE1bcBDqgiwYk1XRKF59JFcx7lkuBXxBduvxEPwRt3SaRwzOmoG6KeEumOT8RHsf6ODtHzftaApo0ohTygR10e_Qj5iyQ2MKs01zyDIOeELiF_rDhETXX-kjmjFek8veDBFv3vqS_Hr69nP1Umy-P69XD5vCilqmQlouLEOEtu9q1jWyQ8sM1gKURNZDJYQSdtv0TSUFRyXaXnVtVXetMhJ4I5bk83nvbzPoQ3CjCa_aG6dfHjb6NGPAQTZCHSGzn85s_sDfGWPSo4sWh8FM6OeooZacV7Jq2ozCGbXBxxiw_78bmD4FoPc6B6BPAWhW6xxAdu7PDuZ7jw6DjtbhZHHrAtqkt969Y_8DRumOBg</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Adam, C.</creator><creator>Bouabdallah, S.</creator><creator>Zarroug, M.</creator><creator>Maitournam, H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20140901</creationdate><title>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</title><author>Adam, C. ; Bouabdallah, S. ; Zarroug, M. ; Maitournam, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-4c23c0ee19fb60b74bec0ae63184e0f153383cd7f75432e839f8b956b98a41273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>[formula omitted]-splines/NURBS</topic><topic>Cantilever beams</topic><topic>Engineering Sciences</topic><topic>Finite element method</topic><topic>Isogeometric analysis</topic><topic>Locking</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Numerical locking</topic><topic>Selective reduced integration</topic><topic>Shear</topic><topic>Structural members</topic><topic>Timoshenko beam</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adam, C.</creatorcontrib><creatorcontrib>Bouabdallah, S.</creatorcontrib><creatorcontrib>Zarroug, M.</creatorcontrib><creatorcontrib>Maitournam, H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adam, C.</au><au>Bouabdallah, S.</au><au>Zarroug, M.</au><au>Maitournam, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-09-01</date><risdate>2014</risdate><volume>279</volume><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A general mathematical framework is proposed, in this paper, to define new quadrature rules in the context of B-spline/NURBS-based isogeometric analysis. High order continuity across the elements within a patch turned out to have higher accuracy than C0 finite elements, as well as a better time efficiency. Unfortunately, a maximum regularity accentuates the shear and membrane locking in thick structural elements. The improved selective reduced integration schemes are given for uni-dimensional beam problems, with basis functions of order two and three, and can be easily extended to higher orders. The resulting B-spline/NURBS finite elements are free from membrane and transverse shear locking. Moreover, no zero energy modes are generated. The performance of the approach is evaluated on the classical test of a cantilever beam subjected to a distributed moment, and compared to Lagrange under-integrated finite elements. •We model Timoshenko isogeometric curved beams.•We examine membrane and shear locking in pure bending problems.•Increasing the continuity across the elements accentuates the numerical locking.•Higher continuity elements exhibit superior accuracy when no locking occurs.•We propose a general mathematical framework to define improved integration rules for locking treatment.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2014.06.023</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2014-09, Vol.279, p.1-28
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01214738v1
source Elsevier ScienceDirect Journals Complete
subjects [formula omitted]-splines/NURBS
Cantilever beams
Engineering Sciences
Finite element method
Isogeometric analysis
Locking
Mathematical analysis
Mathematical models
Membranes
Numerical locking
Selective reduced integration
Shear
Structural members
Timoshenko beam
title Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20numerical%20integration%20for%20locking%20treatment%20in%20isogeometric%20structural%20elements,%20Part%20I:%20Beams&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Adam,%20C.&rft.date=2014-09-01&rft.volume=279&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2014.06.023&rft_dat=%3Cproquest_hal_p%3E1642254579%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642254579&rft_id=info:pmid/&rft_els_id=S0045782514002096&rfr_iscdi=true