Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model
The Bohemian Massif, located at the eastern margin of the European Variscan belt, is characterised by an exceptional accumulation of felsic high-pressure granulites. The petrological, structural and geochronological studies of this region revealed systematic differences between the tectonometamorphi...
Gespeichert in:
Veröffentlicht in: | Gondwana research 2014-03, Vol.25 (2), p.509-521 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 521 |
---|---|
container_issue | 2 |
container_start_page | 509 |
container_title | Gondwana research |
container_volume | 25 |
creator | Maierová, Petra Lexa, Ondrej Schulmann, Karel Štípská, Pavla |
description | The Bohemian Massif, located at the eastern margin of the European Variscan belt, is characterised by an exceptional accumulation of felsic high-pressure granulites. The petrological, structural and geochronological studies of this region revealed systematic differences between the tectonometamorphic evolution of the southern (Moldanubian) and northern (West Sudetes) parts of the orogen. Two contrasting tectonic scenarios have been proposed: gravity-driven vertical mass exchanges followed by continental indentation in the Moldanubian domain, and crustal-scale folding leading to gneiss dome formation in the West Sudetes. We present a numerical model in order to correlate the apparent differences between these two regions with the variations in the dynamics of the modelled system. We model two colliding blocks: an orogenic root, where a felsic lower crust is overlain by a mafic layer and a middle crust, and a continental indentor. We examine the role of the rate of convergence of the two blocks, radiogenic heat production within the felsic lower crust and efficiency of erosion. The prograde part of the metamorphic evolution is controlled by the rate of convergence and the peak temperature depends on the heat production. The retrograde evolution is controlled mostly by erosional processes. In the models, where the material is weakened due to the heating in the felsic lower crust, the gravitational instability of the mafic and felsic layers causes their complete vertical exchange followed by a flow above the indentor. In colder and/or faster models, the thickening is dominated by the buckling of the mafic layer. These two styles of deformation, i.e. gravity-dominated and fold-dominated models, correspond to the structures observed in the Moldanubian and the West Sudetes. Moreover, the calculated pressure–temperature paths of the felsic lower crust are in agreement with available data.
[Display omitted]
► The evolution of the Moldanubian zone agrees with gravity-dominated models. ► The evolution of the West Sudetes agrees with fold-dominated models. ► The effect of heat sources, convergence rate and erosion on PT evolution is examined. |
doi_str_mv | 10.1016/j.gr.2012.08.020 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01214282v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1342937X12002973</els_id><sourcerecordid>oai_HAL_hal_01214282v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-9abeaec95b1346e1cd15a71902cce18fa988a373f495b54776eb0c9568444863</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEuVjZ_TKkGAnTux0KxVQpCKWDmyW61xSl8SubLeIf4-rIjamO52e93T3IHRHSU4JrR-2ee_zgtAiJyInBTlDEyq4yEjF6XnqS1ZkTck_LtFVCFtCWElrMUGfc2ejVyEa2-MIOjrrshGiGp3fbYzGcHDDPhpnseuw864Hm6aD-wKPtd-HiI3FcQP40W1gNMriNxWC6aZ4hu1-BG-0GvDoWhhu0EWnhgC3v_UarZ6fVvNFtnx_eZ3PlplilMesUWtQoJtqnY6ugeqWVorThhRaAxWdaoRQJS87lpCKcV7DmiS8FowxUZfX6P60dqMGufNmVP5bOmXkYraUx1mSRFkhigNNLDmx2rsQPHR_AUrk0avcyt7Lo1dJhExeU2R6ikB64WDAy6ANWA2t8cmfbJ35P_wD3FuAhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Maierová, Petra ; Lexa, Ondrej ; Schulmann, Karel ; Štípská, Pavla</creator><creatorcontrib>Maierová, Petra ; Lexa, Ondrej ; Schulmann, Karel ; Štípská, Pavla</creatorcontrib><description>The Bohemian Massif, located at the eastern margin of the European Variscan belt, is characterised by an exceptional accumulation of felsic high-pressure granulites. The petrological, structural and geochronological studies of this region revealed systematic differences between the tectonometamorphic evolution of the southern (Moldanubian) and northern (West Sudetes) parts of the orogen. Two contrasting tectonic scenarios have been proposed: gravity-driven vertical mass exchanges followed by continental indentation in the Moldanubian domain, and crustal-scale folding leading to gneiss dome formation in the West Sudetes. We present a numerical model in order to correlate the apparent differences between these two regions with the variations in the dynamics of the modelled system. We model two colliding blocks: an orogenic root, where a felsic lower crust is overlain by a mafic layer and a middle crust, and a continental indentor. We examine the role of the rate of convergence of the two blocks, radiogenic heat production within the felsic lower crust and efficiency of erosion. The prograde part of the metamorphic evolution is controlled by the rate of convergence and the peak temperature depends on the heat production. The retrograde evolution is controlled mostly by erosional processes. In the models, where the material is weakened due to the heating in the felsic lower crust, the gravitational instability of the mafic and felsic layers causes their complete vertical exchange followed by a flow above the indentor. In colder and/or faster models, the thickening is dominated by the buckling of the mafic layer. These two styles of deformation, i.e. gravity-dominated and fold-dominated models, correspond to the structures observed in the Moldanubian and the West Sudetes. Moreover, the calculated pressure–temperature paths of the felsic lower crust are in agreement with available data.
[Display omitted]
► The evolution of the Moldanubian zone agrees with gravity-dominated models. ► The evolution of the West Sudetes agrees with fold-dominated models. ► The effect of heat sources, convergence rate and erosion on PT evolution is examined.</description><identifier>ISSN: 1342-937X</identifier><identifier>EISSN: 1878-0571</identifier><identifier>DOI: 10.1016/j.gr.2012.08.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bohemian Massif ; Earth Sciences ; Felsic lower crust ; Numerical model ; Petrography ; PT evolution ; Sciences of the Universe ; Tectonics</subject><ispartof>Gondwana research, 2014-03, Vol.25 (2), p.509-521</ispartof><rights>2012 International Association for Gondwana Research</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-9abeaec95b1346e1cd15a71902cce18fa988a373f495b54776eb0c9568444863</citedby><cites>FETCH-LOGICAL-a417t-9abeaec95b1346e1cd15a71902cce18fa988a373f495b54776eb0c9568444863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gr.2012.08.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01214282$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maierová, Petra</creatorcontrib><creatorcontrib>Lexa, Ondrej</creatorcontrib><creatorcontrib>Schulmann, Karel</creatorcontrib><creatorcontrib>Štípská, Pavla</creatorcontrib><title>Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model</title><title>Gondwana research</title><description>The Bohemian Massif, located at the eastern margin of the European Variscan belt, is characterised by an exceptional accumulation of felsic high-pressure granulites. The petrological, structural and geochronological studies of this region revealed systematic differences between the tectonometamorphic evolution of the southern (Moldanubian) and northern (West Sudetes) parts of the orogen. Two contrasting tectonic scenarios have been proposed: gravity-driven vertical mass exchanges followed by continental indentation in the Moldanubian domain, and crustal-scale folding leading to gneiss dome formation in the West Sudetes. We present a numerical model in order to correlate the apparent differences between these two regions with the variations in the dynamics of the modelled system. We model two colliding blocks: an orogenic root, where a felsic lower crust is overlain by a mafic layer and a middle crust, and a continental indentor. We examine the role of the rate of convergence of the two blocks, radiogenic heat production within the felsic lower crust and efficiency of erosion. The prograde part of the metamorphic evolution is controlled by the rate of convergence and the peak temperature depends on the heat production. The retrograde evolution is controlled mostly by erosional processes. In the models, where the material is weakened due to the heating in the felsic lower crust, the gravitational instability of the mafic and felsic layers causes their complete vertical exchange followed by a flow above the indentor. In colder and/or faster models, the thickening is dominated by the buckling of the mafic layer. These two styles of deformation, i.e. gravity-dominated and fold-dominated models, correspond to the structures observed in the Moldanubian and the West Sudetes. Moreover, the calculated pressure–temperature paths of the felsic lower crust are in agreement with available data.
[Display omitted]
► The evolution of the Moldanubian zone agrees with gravity-dominated models. ► The evolution of the West Sudetes agrees with fold-dominated models. ► The effect of heat sources, convergence rate and erosion on PT evolution is examined.</description><subject>Bohemian Massif</subject><subject>Earth Sciences</subject><subject>Felsic lower crust</subject><subject>Numerical model</subject><subject>Petrography</subject><subject>PT evolution</subject><subject>Sciences of the Universe</subject><subject>Tectonics</subject><issn>1342-937X</issn><issn>1878-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEuVjZ_TKkGAnTux0KxVQpCKWDmyW61xSl8SubLeIf4-rIjamO52e93T3IHRHSU4JrR-2ee_zgtAiJyInBTlDEyq4yEjF6XnqS1ZkTck_LtFVCFtCWElrMUGfc2ejVyEa2-MIOjrrshGiGp3fbYzGcHDDPhpnseuw864Hm6aD-wKPtd-HiI3FcQP40W1gNMriNxWC6aZ4hu1-BG-0GvDoWhhu0EWnhgC3v_UarZ6fVvNFtnx_eZ3PlplilMesUWtQoJtqnY6ugeqWVorThhRaAxWdaoRQJS87lpCKcV7DmiS8FowxUZfX6P60dqMGufNmVP5bOmXkYraUx1mSRFkhigNNLDmx2rsQPHR_AUrk0avcyt7Lo1dJhExeU2R6ikB64WDAy6ANWA2t8cmfbJ35P_wD3FuAhw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Maierová, Petra</creator><creator>Lexa, Ondrej</creator><creator>Schulmann, Karel</creator><creator>Štípská, Pavla</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20140301</creationdate><title>Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model</title><author>Maierová, Petra ; Lexa, Ondrej ; Schulmann, Karel ; Štípská, Pavla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-9abeaec95b1346e1cd15a71902cce18fa988a373f495b54776eb0c9568444863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bohemian Massif</topic><topic>Earth Sciences</topic><topic>Felsic lower crust</topic><topic>Numerical model</topic><topic>Petrography</topic><topic>PT evolution</topic><topic>Sciences of the Universe</topic><topic>Tectonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maierová, Petra</creatorcontrib><creatorcontrib>Lexa, Ondrej</creatorcontrib><creatorcontrib>Schulmann, Karel</creatorcontrib><creatorcontrib>Štípská, Pavla</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Gondwana research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maierová, Petra</au><au>Lexa, Ondrej</au><au>Schulmann, Karel</au><au>Štípská, Pavla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model</atitle><jtitle>Gondwana research</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>25</volume><issue>2</issue><spage>509</spage><epage>521</epage><pages>509-521</pages><issn>1342-937X</issn><eissn>1878-0571</eissn><abstract>The Bohemian Massif, located at the eastern margin of the European Variscan belt, is characterised by an exceptional accumulation of felsic high-pressure granulites. The petrological, structural and geochronological studies of this region revealed systematic differences between the tectonometamorphic evolution of the southern (Moldanubian) and northern (West Sudetes) parts of the orogen. Two contrasting tectonic scenarios have been proposed: gravity-driven vertical mass exchanges followed by continental indentation in the Moldanubian domain, and crustal-scale folding leading to gneiss dome formation in the West Sudetes. We present a numerical model in order to correlate the apparent differences between these two regions with the variations in the dynamics of the modelled system. We model two colliding blocks: an orogenic root, where a felsic lower crust is overlain by a mafic layer and a middle crust, and a continental indentor. We examine the role of the rate of convergence of the two blocks, radiogenic heat production within the felsic lower crust and efficiency of erosion. The prograde part of the metamorphic evolution is controlled by the rate of convergence and the peak temperature depends on the heat production. The retrograde evolution is controlled mostly by erosional processes. In the models, where the material is weakened due to the heating in the felsic lower crust, the gravitational instability of the mafic and felsic layers causes their complete vertical exchange followed by a flow above the indentor. In colder and/or faster models, the thickening is dominated by the buckling of the mafic layer. These two styles of deformation, i.e. gravity-dominated and fold-dominated models, correspond to the structures observed in the Moldanubian and the West Sudetes. Moreover, the calculated pressure–temperature paths of the felsic lower crust are in agreement with available data.
[Display omitted]
► The evolution of the Moldanubian zone agrees with gravity-dominated models. ► The evolution of the West Sudetes agrees with fold-dominated models. ► The effect of heat sources, convergence rate and erosion on PT evolution is examined.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.gr.2012.08.020</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1342-937X |
ispartof | Gondwana research, 2014-03, Vol.25 (2), p.509-521 |
issn | 1342-937X 1878-0571 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01214282v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bohemian Massif Earth Sciences Felsic lower crust Numerical model Petrography PT evolution Sciences of the Universe Tectonics |
title | Contrasting tectono-metamorphic evolution of orogenic lower crust in the Bohemian Massif: A numerical model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20tectono-metamorphic%20evolution%20of%20orogenic%20lower%20crust%20in%20the%20Bohemian%20Massif:%20A%20numerical%20model&rft.jtitle=Gondwana%20research&rft.au=Maierov%C3%A1,%20Petra&rft.date=2014-03-01&rft.volume=25&rft.issue=2&rft.spage=509&rft.epage=521&rft.pages=509-521&rft.issn=1342-937X&rft.eissn=1878-0571&rft_id=info:doi/10.1016/j.gr.2012.08.020&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01214282v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1342937X12002973&rfr_iscdi=true |