Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era
Summary Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantita...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2015-05, Vol.13 (4), p.565-577 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | 4 |
container_start_page | 565 |
container_title | Plant biotechnology journal |
container_volume | 13 |
creator | Pascual, Laura Desplat, Nelly Huang, Bevan E. Desgroux, Aurore Bruguier, Laure Bouchet, Jean‐Paul Le, Quang H. Chauchard, Betty Verschave, Philippe Causse, Mathilde |
description | Summary
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community. |
doi_str_mv | 10.1111/pbi.12282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01208731v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675875045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5542-ddfd612f09d0ef3b7fd5063786198fd939fa425d17379e13508f74685f29ca923</originalsourceid><addsrcrecordid>eNqNks1qGzEQgJfS0KRpD32BIuilPTjRz-pnj05om4BDckjPQtaOYoW1tJG0LnmLPnIVO3WhUIguEsM3n2aGaZoPBJ-Qek7HpT8hlCr6qjkirZAzKTh9vX-37WHzNud7jCkRXLxpDilnilLJj5pfN7FAKN4MKDpkUIlrUyK6mn-_PEdjHKfBFB9DjaMerB9XkFBZAbqDAMVbZGMoKW6THyZTRaXyG0AlGV8yMqGveQVsQdZMuf6yMclXLiMftqIEGR4mCNaHOwTJvGsOnBkyvH--j5sf377enl_MFte1pPliZjlv6azvXS8IdbjrMTi2lK7nWDCpBOmU6zvWOdNS3hPJZAeEcaycbIXijnbWdJQdN1923pUZ9Jj82qRHHY3XF_OFfophQrGSjGxIZT_v2DHFWmsueu2zhWEwAeKUNaleKVWd9EtQ3PKOsO4FqORK8opX9NM_6H2cUqjz0QwLKaTCSvxtyaaYcwK374tg_bQoui6K3i5KZT8-G6flGvo9-WczKnC6A376AR7_b9I3Z5c75W8L8sYK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067678086</pqid></control><display><type>article</type><title>Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era</title><source>Wiley-Blackwell Open Access Titles</source><creator>Pascual, Laura ; Desplat, Nelly ; Huang, Bevan E. ; Desgroux, Aurore ; Bruguier, Laure ; Bouchet, Jean‐Paul ; Le, Quang H. ; Chauchard, Betty ; Verschave, Philippe ; Causse, Mathilde</creator><creatorcontrib>Pascual, Laura ; Desplat, Nelly ; Huang, Bevan E. ; Desgroux, Aurore ; Bruguier, Laure ; Bouchet, Jean‐Paul ; Le, Quang H. ; Chauchard, Betty ; Verschave, Philippe ; Causse, Mathilde</creatorcontrib><description>Summary
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community.</description><identifier>ISSN: 1467-7644</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12282</identifier><identifier>PMID: 25382275</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Agricultural sciences ; Bioinformatics ; Chromosome 3 ; Fruits ; Gene mapping ; Gene sequencing ; Genes ; Genes, Plant ; Genetic control ; Genetic diversity ; Genetics ; Genomes ; Genomics ; Haplotypes ; Hypothesis testing ; Life Sciences ; Linkages ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Mapping ; Morphology ; multiparental population ; Plants (organisms) ; Polymorphism ; Polymorphism, Single Nucleotide ; Population genetics ; Populations ; QTL ; Quantitative Trait Loci ; Recombination ; resequencing ; Rice ; Single-nucleotide polymorphism ; SNP ; Solanum lycopersicum ; Tomatoes ; Whole genome sequencing</subject><ispartof>Plant biotechnology journal, 2015-05, Vol.13 (4), p.565-577</ispartof><rights>2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd</rights><rights>2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2015. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5542-ddfd612f09d0ef3b7fd5063786198fd939fa425d17379e13508f74685f29ca923</citedby><cites>FETCH-LOGICAL-c5542-ddfd612f09d0ef3b7fd5063786198fd939fa425d17379e13508f74685f29ca923</cites><orcidid>0000-0002-4435-0964 ; 0000-0002-0407-4985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12282$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25382275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01208731$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pascual, Laura</creatorcontrib><creatorcontrib>Desplat, Nelly</creatorcontrib><creatorcontrib>Huang, Bevan E.</creatorcontrib><creatorcontrib>Desgroux, Aurore</creatorcontrib><creatorcontrib>Bruguier, Laure</creatorcontrib><creatorcontrib>Bouchet, Jean‐Paul</creatorcontrib><creatorcontrib>Le, Quang H.</creatorcontrib><creatorcontrib>Chauchard, Betty</creatorcontrib><creatorcontrib>Verschave, Philippe</creatorcontrib><creatorcontrib>Causse, Mathilde</creatorcontrib><title>Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community.</description><subject>Agricultural sciences</subject><subject>Bioinformatics</subject><subject>Chromosome 3</subject><subject>Fruits</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Genetic control</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Hypothesis testing</subject><subject>Life Sciences</subject><subject>Linkages</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Mapping</subject><subject>Morphology</subject><subject>multiparental population</subject><subject>Plants (organisms)</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Populations</subject><subject>QTL</subject><subject>Quantitative Trait Loci</subject><subject>Recombination</subject><subject>resequencing</subject><subject>Rice</subject><subject>Single-nucleotide polymorphism</subject><subject>SNP</subject><subject>Solanum lycopersicum</subject><subject>Tomatoes</subject><subject>Whole genome sequencing</subject><issn>1467-7644</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1qGzEQgJfS0KRpD32BIuilPTjRz-pnj05om4BDckjPQtaOYoW1tJG0LnmLPnIVO3WhUIguEsM3n2aGaZoPBJ-Qek7HpT8hlCr6qjkirZAzKTh9vX-37WHzNud7jCkRXLxpDilnilLJj5pfN7FAKN4MKDpkUIlrUyK6mn-_PEdjHKfBFB9DjaMerB9XkFBZAbqDAMVbZGMoKW6THyZTRaXyG0AlGV8yMqGveQVsQdZMuf6yMclXLiMftqIEGR4mCNaHOwTJvGsOnBkyvH--j5sf377enl_MFte1pPliZjlv6azvXS8IdbjrMTi2lK7nWDCpBOmU6zvWOdNS3hPJZAeEcaycbIXijnbWdJQdN1923pUZ9Jj82qRHHY3XF_OFfophQrGSjGxIZT_v2DHFWmsueu2zhWEwAeKUNaleKVWd9EtQ3PKOsO4FqORK8opX9NM_6H2cUqjz0QwLKaTCSvxtyaaYcwK374tg_bQoui6K3i5KZT8-G6flGvo9-WczKnC6A376AR7_b9I3Z5c75W8L8sYK</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Pascual, Laura</creator><creator>Desplat, Nelly</creator><creator>Huang, Bevan E.</creator><creator>Desgroux, Aurore</creator><creator>Bruguier, Laure</creator><creator>Bouchet, Jean‐Paul</creator><creator>Le, Quang H.</creator><creator>Chauchard, Betty</creator><creator>Verschave, Philippe</creator><creator>Causse, Mathilde</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4435-0964</orcidid><orcidid>https://orcid.org/0000-0002-0407-4985</orcidid></search><sort><creationdate>201505</creationdate><title>Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era</title><author>Pascual, Laura ; Desplat, Nelly ; Huang, Bevan E. ; Desgroux, Aurore ; Bruguier, Laure ; Bouchet, Jean‐Paul ; Le, Quang H. ; Chauchard, Betty ; Verschave, Philippe ; Causse, Mathilde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5542-ddfd612f09d0ef3b7fd5063786198fd939fa425d17379e13508f74685f29ca923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Agricultural sciences</topic><topic>Bioinformatics</topic><topic>Chromosome 3</topic><topic>Fruits</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Genetic control</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Hypothesis testing</topic><topic>Life Sciences</topic><topic>Linkages</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Mapping</topic><topic>Morphology</topic><topic>multiparental population</topic><topic>Plants (organisms)</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Populations</topic><topic>QTL</topic><topic>Quantitative Trait Loci</topic><topic>Recombination</topic><topic>resequencing</topic><topic>Rice</topic><topic>Single-nucleotide polymorphism</topic><topic>SNP</topic><topic>Solanum lycopersicum</topic><topic>Tomatoes</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pascual, Laura</creatorcontrib><creatorcontrib>Desplat, Nelly</creatorcontrib><creatorcontrib>Huang, Bevan E.</creatorcontrib><creatorcontrib>Desgroux, Aurore</creatorcontrib><creatorcontrib>Bruguier, Laure</creatorcontrib><creatorcontrib>Bouchet, Jean‐Paul</creatorcontrib><creatorcontrib>Le, Quang H.</creatorcontrib><creatorcontrib>Chauchard, Betty</creatorcontrib><creatorcontrib>Verschave, Philippe</creatorcontrib><creatorcontrib>Causse, Mathilde</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pascual, Laura</au><au>Desplat, Nelly</au><au>Huang, Bevan E.</au><au>Desgroux, Aurore</au><au>Bruguier, Laure</au><au>Bouchet, Jean‐Paul</au><au>Le, Quang H.</au><au>Chauchard, Betty</au><au>Verschave, Philippe</au><au>Causse, Mathilde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2015-05</date><risdate>2015</risdate><volume>13</volume><issue>4</issue><spage>565</spage><epage>577</epage><pages>565-577</pages><issn>1467-7644</issn><eissn>1467-7652</eissn><abstract>Summary
Identification of the polymorphisms controlling quantitative traits remains a challenge for plant geneticists. Multiparent advanced generation intercross (MAGIC) populations offer an alternative to traditional linkage or association mapping populations by increasing the precision of quantitative trait loci (QTL) mapping. Here, we present the first tomato MAGIC population and highlight its potential for the valorization of intraspecific variation, QTL mapping and causal polymorphism identification. The population was developed by crossing eight founder lines, selected to include a wide range of genetic diversity, whose genomes have been previously resequenced. We selected 1536 SNPs among the 4 million available to enhance haplotype prediction and recombination detection in the population. The linkage map obtained showed an 87% increase in recombination frequencies compared to biparental populations. The prediction of the haplotype origin was possible for 89% of the MAGIC line genomes, allowing QTL detection at the haplotype level. We grew the population in two greenhouse trials and detected QTLs for fruit weight. We mapped three stable QTLs and six specific of a location. Finally, we showed the potential of the MAGIC population when coupled with whole genome sequencing of founder lines to detect candidate SNPs underlying the QTLs. For a previously cloned QTL on chromosome 3, we used the predicted allelic effect of each founder and their genome sequences to select putative causal polymorphisms in the supporting interval. The number of candidate polymorphisms was reduced from 12 284 (in 800 genes) to 96 (in 54 genes), including the actual causal polymorphism. This population represents a new permanent resource for the tomato genetics community.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>25382275</pmid><doi>10.1111/pbi.12282</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4435-0964</orcidid><orcidid>https://orcid.org/0000-0002-0407-4985</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2015-05, Vol.13 (4), p.565-577 |
issn | 1467-7644 1467-7652 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01208731v1 |
source | Wiley-Blackwell Open Access Titles |
subjects | Agricultural sciences Bioinformatics Chromosome 3 Fruits Gene mapping Gene sequencing Genes Genes, Plant Genetic control Genetic diversity Genetics Genomes Genomics Haplotypes Hypothesis testing Life Sciences Linkages Lycopersicon esculentum Lycopersicon esculentum - genetics Mapping Morphology multiparental population Plants (organisms) Polymorphism Polymorphism, Single Nucleotide Population genetics Populations QTL Quantitative Trait Loci Recombination resequencing Rice Single-nucleotide polymorphism SNP Solanum lycopersicum Tomatoes Whole genome sequencing |
title | Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potential%20of%20a%20tomato%20MAGIC%20population%20to%20decipher%20the%20genetic%20control%20of%20quantitative%20traits%20and%20detect%20causal%20variants%20in%20the%20resequencing%20era&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Pascual,%20Laura&rft.date=2015-05&rft.volume=13&rft.issue=4&rft.spage=565&rft.epage=577&rft.pages=565-577&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12282&rft_dat=%3Cproquest_24P%3E1675875045%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067678086&rft_id=info:pmid/25382275&rfr_iscdi=true |