Data Services with uncertain and correlated semantics
Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the se...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2016-01, Vol.19 (1), p.157-175 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 1 |
container_start_page | 157 |
container_title | World wide web (Bussum) |
container_volume | 19 |
creator | Malki, Abdelhamid Benslimane, Djamal Benslimane, Sidi-Mohamed Barhamgi, Mahmoud Malki, Mimoun Ghodous, Parisa Drira, Khalil |
description | Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities. |
doi_str_mv | 10.1007/s11280-014-0317-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01208088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793294670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWKsfwFvAix6iM7ubbPZY_Feh4EEFb8tmM7EpaVJ301q_vVsiIoKneQy_95h5UXSKcIkA8sojshwSQJEAR5ls96IRppInKJDvB83zLOj09TA68n4BABlXOIrSG9Ob-Incprbk44-6n8fr1pLrTd3Gpi1j2zlHjempjD0tTdvX1h9HB5VpPJ18z3H0cnf7fD1NZo_3D9eTWWJFyvtEETIjLXFOlSx4CbmylVVS8LICRAm5TYtClVxIVbBKMV7YgoAzRcJawfg4uhhy56bRK1cvjfvUnan1dDLTux0ggxzyfIOBPR_Yleve1-R7vay9paYxLXVrr1GqECwyCQE9-4MuurVrwyeBSlOWsgyzQOFAWdd576j6uQBB70rXQ-nhCKF3pett8LDB4wPbvpH7lfyv6QublYLf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755252616</pqid></control><display><type>article</type><title>Data Services with uncertain and correlated semantics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Malki, Abdelhamid ; Benslimane, Djamal ; Benslimane, Sidi-Mohamed ; Barhamgi, Mahmoud ; Malki, Mimoun ; Ghodous, Parisa ; Drira, Khalil</creator><creatorcontrib>Malki, Abdelhamid ; Benslimane, Djamal ; Benslimane, Sidi-Mohamed ; Barhamgi, Mahmoud ; Malki, Mimoun ; Ghodous, Parisa ; Drira, Khalil</creatorcontrib><description>Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-014-0317-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Correlation ; Data sources ; Database Management ; Encapsulation ; Information Systems Applications (incl.Internet) ; Internet ; Operating Systems ; Probabilistic methods ; Probability theory ; Queries ; Semantics</subject><ispartof>World wide web (Bussum), 2016-01, Vol.19 (1), p.157-175</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</citedby><cites>FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</cites><orcidid>0000-0001-5700-8060 ; 0000-0003-3222-0043 ; 0000-0002-4770-1563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-014-0317-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-014-0317-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01208088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Malki, Abdelhamid</creatorcontrib><creatorcontrib>Benslimane, Djamal</creatorcontrib><creatorcontrib>Benslimane, Sidi-Mohamed</creatorcontrib><creatorcontrib>Barhamgi, Mahmoud</creatorcontrib><creatorcontrib>Malki, Mimoun</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Drira, Khalil</creatorcontrib><title>Data Services with uncertain and correlated semantics</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.</description><subject>Computer Science</subject><subject>Correlation</subject><subject>Data sources</subject><subject>Database Management</subject><subject>Encapsulation</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Internet</subject><subject>Operating Systems</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Queries</subject><subject>Semantics</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxYMoWKsfwFvAix6iM7ubbPZY_Feh4EEFb8tmM7EpaVJ301q_vVsiIoKneQy_95h5UXSKcIkA8sojshwSQJEAR5ls96IRppInKJDvB83zLOj09TA68n4BABlXOIrSG9Ob-Incprbk44-6n8fr1pLrTd3Gpi1j2zlHjempjD0tTdvX1h9HB5VpPJ18z3H0cnf7fD1NZo_3D9eTWWJFyvtEETIjLXFOlSx4CbmylVVS8LICRAm5TYtClVxIVbBKMV7YgoAzRcJawfg4uhhy56bRK1cvjfvUnan1dDLTux0ggxzyfIOBPR_Yleve1-R7vay9paYxLXVrr1GqECwyCQE9-4MuurVrwyeBSlOWsgyzQOFAWdd576j6uQBB70rXQ-nhCKF3pett8LDB4wPbvpH7lfyv6QublYLf</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Malki, Abdelhamid</creator><creator>Benslimane, Djamal</creator><creator>Benslimane, Sidi-Mohamed</creator><creator>Barhamgi, Mahmoud</creator><creator>Malki, Mimoun</creator><creator>Ghodous, Parisa</creator><creator>Drira, Khalil</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5700-8060</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid><orcidid>https://orcid.org/0000-0002-4770-1563</orcidid></search><sort><creationdate>20160101</creationdate><title>Data Services with uncertain and correlated semantics</title><author>Malki, Abdelhamid ; Benslimane, Djamal ; Benslimane, Sidi-Mohamed ; Barhamgi, Mahmoud ; Malki, Mimoun ; Ghodous, Parisa ; Drira, Khalil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Correlation</topic><topic>Data sources</topic><topic>Database Management</topic><topic>Encapsulation</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Internet</topic><topic>Operating Systems</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Queries</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malki, Abdelhamid</creatorcontrib><creatorcontrib>Benslimane, Djamal</creatorcontrib><creatorcontrib>Benslimane, Sidi-Mohamed</creatorcontrib><creatorcontrib>Barhamgi, Mahmoud</creatorcontrib><creatorcontrib>Malki, Mimoun</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Drira, Khalil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malki, Abdelhamid</au><au>Benslimane, Djamal</au><au>Benslimane, Sidi-Mohamed</au><au>Barhamgi, Mahmoud</au><au>Malki, Mimoun</au><au>Ghodous, Parisa</au><au>Drira, Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Services with uncertain and correlated semantics</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>19</volume><issue>1</issue><spage>157</spage><epage>175</epage><pages>157-175</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-014-0317-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5700-8060</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid><orcidid>https://orcid.org/0000-0002-4770-1563</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2016-01, Vol.19 (1), p.157-175 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01208088v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Science Correlation Data sources Database Management Encapsulation Information Systems Applications (incl.Internet) Internet Operating Systems Probabilistic methods Probability theory Queries Semantics |
title | Data Services with uncertain and correlated semantics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Services%20with%20uncertain%20and%20correlated%20semantics&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Malki,%20Abdelhamid&rft.date=2016-01-01&rft.volume=19&rft.issue=1&rft.spage=157&rft.epage=175&rft.pages=157-175&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-014-0317-x&rft_dat=%3Cproquest_hal_p%3E1793294670%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755252616&rft_id=info:pmid/&rfr_iscdi=true |