Data Services with uncertain and correlated semantics

Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2016-01, Vol.19 (1), p.157-175
Hauptverfasser: Malki, Abdelhamid, Benslimane, Djamal, Benslimane, Sidi-Mohamed, Barhamgi, Mahmoud, Malki, Mimoun, Ghodous, Parisa, Drira, Khalil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 157
container_title World wide web (Bussum)
container_volume 19
creator Malki, Abdelhamid
Benslimane, Djamal
Benslimane, Sidi-Mohamed
Barhamgi, Mahmoud
Malki, Mimoun
Ghodous, Parisa
Drira, Khalil
description Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.
doi_str_mv 10.1007/s11280-014-0317-x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01208088v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793294670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWKsfwFvAix6iM7ubbPZY_Feh4EEFb8tmM7EpaVJ301q_vVsiIoKneQy_95h5UXSKcIkA8sojshwSQJEAR5ls96IRppInKJDvB83zLOj09TA68n4BABlXOIrSG9Ob-Incprbk44-6n8fr1pLrTd3Gpi1j2zlHjempjD0tTdvX1h9HB5VpPJ18z3H0cnf7fD1NZo_3D9eTWWJFyvtEETIjLXFOlSx4CbmylVVS8LICRAm5TYtClVxIVbBKMV7YgoAzRcJawfg4uhhy56bRK1cvjfvUnan1dDLTux0ggxzyfIOBPR_Yleve1-R7vay9paYxLXVrr1GqECwyCQE9-4MuurVrwyeBSlOWsgyzQOFAWdd576j6uQBB70rXQ-nhCKF3pett8LDB4wPbvpH7lfyv6QublYLf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755252616</pqid></control><display><type>article</type><title>Data Services with uncertain and correlated semantics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Malki, Abdelhamid ; Benslimane, Djamal ; Benslimane, Sidi-Mohamed ; Barhamgi, Mahmoud ; Malki, Mimoun ; Ghodous, Parisa ; Drira, Khalil</creator><creatorcontrib>Malki, Abdelhamid ; Benslimane, Djamal ; Benslimane, Sidi-Mohamed ; Barhamgi, Mahmoud ; Malki, Mimoun ; Ghodous, Parisa ; Drira, Khalil</creatorcontrib><description>Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-014-0317-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Correlation ; Data sources ; Database Management ; Encapsulation ; Information Systems Applications (incl.Internet) ; Internet ; Operating Systems ; Probabilistic methods ; Probability theory ; Queries ; Semantics</subject><ispartof>World wide web (Bussum), 2016-01, Vol.19 (1), p.157-175</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</citedby><cites>FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</cites><orcidid>0000-0001-5700-8060 ; 0000-0003-3222-0043 ; 0000-0002-4770-1563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-014-0317-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-014-0317-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01208088$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Malki, Abdelhamid</creatorcontrib><creatorcontrib>Benslimane, Djamal</creatorcontrib><creatorcontrib>Benslimane, Sidi-Mohamed</creatorcontrib><creatorcontrib>Barhamgi, Mahmoud</creatorcontrib><creatorcontrib>Malki, Mimoun</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Drira, Khalil</creatorcontrib><title>Data Services with uncertain and correlated semantics</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.</description><subject>Computer Science</subject><subject>Correlation</subject><subject>Data sources</subject><subject>Database Management</subject><subject>Encapsulation</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Internet</subject><subject>Operating Systems</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Queries</subject><subject>Semantics</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxYMoWKsfwFvAix6iM7ubbPZY_Feh4EEFb8tmM7EpaVJ301q_vVsiIoKneQy_95h5UXSKcIkA8sojshwSQJEAR5ls96IRppInKJDvB83zLOj09TA68n4BABlXOIrSG9Ob-Incprbk44-6n8fr1pLrTd3Gpi1j2zlHjempjD0tTdvX1h9HB5VpPJ18z3H0cnf7fD1NZo_3D9eTWWJFyvtEETIjLXFOlSx4CbmylVVS8LICRAm5TYtClVxIVbBKMV7YgoAzRcJawfg4uhhy56bRK1cvjfvUnan1dDLTux0ggxzyfIOBPR_Yleve1-R7vay9paYxLXVrr1GqECwyCQE9-4MuurVrwyeBSlOWsgyzQOFAWdd576j6uQBB70rXQ-nhCKF3pett8LDB4wPbvpH7lfyv6QublYLf</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Malki, Abdelhamid</creator><creator>Benslimane, Djamal</creator><creator>Benslimane, Sidi-Mohamed</creator><creator>Barhamgi, Mahmoud</creator><creator>Malki, Mimoun</creator><creator>Ghodous, Parisa</creator><creator>Drira, Khalil</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5700-8060</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid><orcidid>https://orcid.org/0000-0002-4770-1563</orcidid></search><sort><creationdate>20160101</creationdate><title>Data Services with uncertain and correlated semantics</title><author>Malki, Abdelhamid ; Benslimane, Djamal ; Benslimane, Sidi-Mohamed ; Barhamgi, Mahmoud ; Malki, Mimoun ; Ghodous, Parisa ; Drira, Khalil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-9e12a7ce33ef7b3d089cfc9743df011708c5bb9d3479b2f923bcbe0329e4cc423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Correlation</topic><topic>Data sources</topic><topic>Database Management</topic><topic>Encapsulation</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Internet</topic><topic>Operating Systems</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Queries</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malki, Abdelhamid</creatorcontrib><creatorcontrib>Benslimane, Djamal</creatorcontrib><creatorcontrib>Benslimane, Sidi-Mohamed</creatorcontrib><creatorcontrib>Barhamgi, Mahmoud</creatorcontrib><creatorcontrib>Malki, Mimoun</creatorcontrib><creatorcontrib>Ghodous, Parisa</creatorcontrib><creatorcontrib>Drira, Khalil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malki, Abdelhamid</au><au>Benslimane, Djamal</au><au>Benslimane, Sidi-Mohamed</au><au>Barhamgi, Mahmoud</au><au>Malki, Mimoun</au><au>Ghodous, Parisa</au><au>Drira, Khalil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Services with uncertain and correlated semantics</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>19</volume><issue>1</issue><spage>157</spage><epage>175</epage><pages>157-175</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Currently, a good portion of datasets on Internet are accessed through data services, where user’s queries are answered as a composition of multiple data services. Defining the semantics of data services is the first step towards automating their composition. An interesting approach to define the semantics of data services is by describing them as semantic views over a domain ontology. However, defining such semantic views cannot always be done with certainty, especially when the service’s returned data are too complex. In such case, a data service is associated with several possible semantic views. In addition, complex correlations may be present among these possible semantic views, mainly when data services encapsulate the same data sources. In this paper, we propose a probabilistic approach to model the semantic uncertainty of data services. Services along with their possible semantic views are represented in probabilistic service registry. The correlations among service semantics are modeled through a directed probabilistic graphical model (Bayesian network). Based on our modeling, we study the problem of compositing correlated data services to answer a user query, and propose an efficient method to compute the different possible compositions and their probabilities.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-014-0317-x</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5700-8060</orcidid><orcidid>https://orcid.org/0000-0003-3222-0043</orcidid><orcidid>https://orcid.org/0000-0002-4770-1563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2016-01, Vol.19 (1), p.157-175
issn 1386-145X
1573-1413
language eng
recordid cdi_hal_primary_oai_HAL_hal_01208088v1
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Correlation
Data sources
Database Management
Encapsulation
Information Systems Applications (incl.Internet)
Internet
Operating Systems
Probabilistic methods
Probability theory
Queries
Semantics
title Data Services with uncertain and correlated semantics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Services%20with%20uncertain%20and%20correlated%20semantics&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Malki,%20Abdelhamid&rft.date=2016-01-01&rft.volume=19&rft.issue=1&rft.spage=157&rft.epage=175&rft.pages=157-175&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-014-0317-x&rft_dat=%3Cproquest_hal_p%3E1793294670%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755252616&rft_id=info:pmid/&rfr_iscdi=true