Bicovariograms and Euler characteristic of regular sets

We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the numbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2018-02, Vol.291 (2-3), p.398-419
1. Verfasser: Lachièze‐Rey, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 2-3
container_start_page 398
container_title Mathematische Nachrichten
container_volume 291
creator Lachièze‐Rey, R.
description We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.
doi_str_mv 10.1002/mana.201500500
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01207501v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001076682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFavngOePKTObrJfx1iqFapeFLwt091Nm5I2dTet9L83JaJHYWBg-L03j0fINYURBWB3a9zgiAHlAN2ckAHljKVMUHFKBh3AU67yj3NyEeMKALSWYkDkfWWbPYaqWQRcxwQ3Lpnsah8Su8SAtvWhim1lk6ZMgl_sagxJ9G28JGcl1tFf_ewheX-YvI2n6ez18WlczFKbaQqpBspy51QG2qPipZcgGfLcKls6rxlH4bXnzDnvMqWFmysl2Fzm89xSmdNsSG573yXWZhuqNYaDabAy02JmjrfuAUgOdJ917E3PbkPzufOxNatmFzZdPMMAKEghFOuoUU_Z0MQYfPlrS8EcizTHIs1vkZ1A94KvqvaHf2jzXLwUf9pvYal1Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001076682</pqid></control><display><type>article</type><title>Bicovariograms and Euler characteristic of regular sets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lachièze‐Rey, R.</creator><creatorcontrib>Lachièze‐Rey, R.</creatorcontrib><description>We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201500500</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>28A75 ; 52A22 ; 60D05 ; 60G10 ; Bivariate analysis ; Boolean algebra ; boolean model ; Euler characteristic ; intrinsic volumes ; Mathematics ; Probability ; shot noise processes</subject><ispartof>Mathematische Nachrichten, 2018-02, Vol.291 (2-3), p.398-419</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</citedby><cites>FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</cites><orcidid>0000-0002-8225-0884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201500500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201500500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01207501$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lachièze‐Rey, R.</creatorcontrib><title>Bicovariograms and Euler characteristic of regular sets</title><title>Mathematische Nachrichten</title><description>We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.</description><subject>28A75</subject><subject>52A22</subject><subject>60D05</subject><subject>60G10</subject><subject>Bivariate analysis</subject><subject>Boolean algebra</subject><subject>boolean model</subject><subject>Euler characteristic</subject><subject>intrinsic volumes</subject><subject>Mathematics</subject><subject>Probability</subject><subject>shot noise processes</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFavngOePKTObrJfx1iqFapeFLwt091Nm5I2dTet9L83JaJHYWBg-L03j0fINYURBWB3a9zgiAHlAN2ckAHljKVMUHFKBh3AU67yj3NyEeMKALSWYkDkfWWbPYaqWQRcxwQ3Lpnsah8Su8SAtvWhim1lk6ZMgl_sagxJ9G28JGcl1tFf_ewheX-YvI2n6ez18WlczFKbaQqpBspy51QG2qPipZcgGfLcKls6rxlH4bXnzDnvMqWFmysl2Fzm89xSmdNsSG573yXWZhuqNYaDabAy02JmjrfuAUgOdJ917E3PbkPzufOxNatmFzZdPMMAKEghFOuoUU_Z0MQYfPlrS8EcizTHIs1vkZ1A94KvqvaHf2jzXLwUf9pvYal1Qw</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Lachièze‐Rey, R.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8225-0884</orcidid></search><sort><creationdate>201802</creationdate><title>Bicovariograms and Euler characteristic of regular sets</title><author>Lachièze‐Rey, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>28A75</topic><topic>52A22</topic><topic>60D05</topic><topic>60G10</topic><topic>Bivariate analysis</topic><topic>Boolean algebra</topic><topic>boolean model</topic><topic>Euler characteristic</topic><topic>intrinsic volumes</topic><topic>Mathematics</topic><topic>Probability</topic><topic>shot noise processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lachièze‐Rey, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lachièze‐Rey, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bicovariograms and Euler characteristic of regular sets</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2018-02</date><risdate>2018</risdate><volume>291</volume><issue>2-3</issue><spage>398</spage><epage>419</epage><pages>398-419</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201500500</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8225-0884</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2018-02, Vol.291 (2-3), p.398-419
issn 0025-584X
1522-2616
language eng
recordid cdi_hal_primary_oai_HAL_hal_01207501v3
source Wiley Online Library Journals Frontfile Complete
subjects 28A75
52A22
60D05
60G10
Bivariate analysis
Boolean algebra
boolean model
Euler characteristic
intrinsic volumes
Mathematics
Probability
shot noise processes
title Bicovariograms and Euler characteristic of regular sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bicovariograms%20and%20Euler%20characteristic%20of%20regular%20sets&rft.jtitle=Mathematische%20Nachrichten&rft.au=Lachi%C3%A8ze%E2%80%90Rey,%20R.&rft.date=2018-02&rft.volume=291&rft.issue=2-3&rft.spage=398&rft.epage=419&rft.pages=398-419&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201500500&rft_dat=%3Cproquest_hal_p%3E2001076682%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001076682&rft_id=info:pmid/&rfr_iscdi=true