Bicovariograms and Euler characteristic of regular sets
We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the numbe...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2018-02, Vol.291 (2-3), p.398-419 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 419 |
---|---|
container_issue | 2-3 |
container_start_page | 398 |
container_title | Mathematische Nachrichten |
container_volume | 291 |
creator | Lachièze‐Rey, R. |
description | We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results. |
doi_str_mv | 10.1002/mana.201500500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01207501v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001076682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsFavngOePKTObrJfx1iqFapeFLwt091Nm5I2dTet9L83JaJHYWBg-L03j0fINYURBWB3a9zgiAHlAN2ckAHljKVMUHFKBh3AU67yj3NyEeMKALSWYkDkfWWbPYaqWQRcxwQ3Lpnsah8Su8SAtvWhim1lk6ZMgl_sagxJ9G28JGcl1tFf_ewheX-YvI2n6ez18WlczFKbaQqpBspy51QG2qPipZcgGfLcKls6rxlH4bXnzDnvMqWFmysl2Fzm89xSmdNsSG573yXWZhuqNYaDabAy02JmjrfuAUgOdJ917E3PbkPzufOxNatmFzZdPMMAKEghFOuoUU_Z0MQYfPlrS8EcizTHIs1vkZ1A94KvqvaHf2jzXLwUf9pvYal1Qw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001076682</pqid></control><display><type>article</type><title>Bicovariograms and Euler characteristic of regular sets</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lachièze‐Rey, R.</creator><creatorcontrib>Lachièze‐Rey, R.</creatorcontrib><description>We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201500500</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>28A75 ; 52A22 ; 60D05 ; 60G10 ; Bivariate analysis ; Boolean algebra ; boolean model ; Euler characteristic ; intrinsic volumes ; Mathematics ; Probability ; shot noise processes</subject><ispartof>Mathematische Nachrichten, 2018-02, Vol.291 (2-3), p.398-419</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</citedby><cites>FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</cites><orcidid>0000-0002-8225-0884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201500500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201500500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01207501$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lachièze‐Rey, R.</creatorcontrib><title>Bicovariograms and Euler characteristic of regular sets</title><title>Mathematische Nachrichten</title><description>We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.</description><subject>28A75</subject><subject>52A22</subject><subject>60D05</subject><subject>60G10</subject><subject>Bivariate analysis</subject><subject>Boolean algebra</subject><subject>boolean model</subject><subject>Euler characteristic</subject><subject>intrinsic volumes</subject><subject>Mathematics</subject><subject>Probability</subject><subject>shot noise processes</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsFavngOePKTObrJfx1iqFapeFLwt091Nm5I2dTet9L83JaJHYWBg-L03j0fINYURBWB3a9zgiAHlAN2ckAHljKVMUHFKBh3AU67yj3NyEeMKALSWYkDkfWWbPYaqWQRcxwQ3Lpnsah8Su8SAtvWhim1lk6ZMgl_sagxJ9G28JGcl1tFf_ewheX-YvI2n6ez18WlczFKbaQqpBspy51QG2qPipZcgGfLcKls6rxlH4bXnzDnvMqWFmysl2Fzm89xSmdNsSG573yXWZhuqNYaDabAy02JmjrfuAUgOdJ917E3PbkPzufOxNatmFzZdPMMAKEghFOuoUU_Z0MQYfPlrS8EcizTHIs1vkZ1A94KvqvaHf2jzXLwUf9pvYal1Qw</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Lachièze‐Rey, R.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8225-0884</orcidid></search><sort><creationdate>201802</creationdate><title>Bicovariograms and Euler characteristic of regular sets</title><author>Lachièze‐Rey, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3910-90124dd8309ea85fe7072a54c8cfde925a6e9e52dded3896db8862b74b4c17413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>28A75</topic><topic>52A22</topic><topic>60D05</topic><topic>60G10</topic><topic>Bivariate analysis</topic><topic>Boolean algebra</topic><topic>boolean model</topic><topic>Euler characteristic</topic><topic>intrinsic volumes</topic><topic>Mathematics</topic><topic>Probability</topic><topic>shot noise processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lachièze‐Rey, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lachièze‐Rey, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bicovariograms and Euler characteristic of regular sets</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2018-02</date><risdate>2018</risdate><volume>291</volume><issue>2-3</issue><spage>398</spage><epage>419</epage><pages>398-419</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We establish an expression of the Euler characteristic of a r‐regular planar set in function of some variographic quantities. The usual C2 framework is relaxed to a C1,1 regularity assumption, generalising existing local formulas for the Euler characteristic. We give also general bounds on the number of connected components of a measurable set of R2 in terms of local quantities. These results are then combined to yield a new expression of the mean Euler characteristic of a random regular set, depending solely on the third order marginals for arbitrarily close arguments. We derive results for level sets of some moving average processes and for the boolean model with non‐connected polyrectangular grains in R2. Applications to excursions of smooth bivariate random fields are derived in the companion paper , and applied for instance to C1,1 Gaussian fields, generalising standard results.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201500500</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8225-0884</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2018-02, Vol.291 (2-3), p.398-419 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01207501v3 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 28A75 52A22 60D05 60G10 Bivariate analysis Boolean algebra boolean model Euler characteristic intrinsic volumes Mathematics Probability shot noise processes |
title | Bicovariograms and Euler characteristic of regular sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bicovariograms%20and%20Euler%20characteristic%20of%20regular%20sets&rft.jtitle=Mathematische%20Nachrichten&rft.au=Lachi%C3%A8ze%E2%80%90Rey,%20R.&rft.date=2018-02&rft.volume=291&rft.issue=2-3&rft.spage=398&rft.epage=419&rft.pages=398-419&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201500500&rft_dat=%3Cproquest_hal_p%3E2001076682%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001076682&rft_id=info:pmid/&rfr_iscdi=true |