Geometry of reproducing kernels in model spaces near the boundary
We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Cla...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2017-03, Vol.447 (2), p.971-987 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 987 |
---|---|
container_issue | 2 |
container_start_page | 971 |
container_title | Journal of mathematical analysis and applications |
container_volume | 447 |
creator | Baranov, A. Hartmann, A. Kellay, K. |
description | We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity. |
doi_str_mv | 10.1016/j.jmaa.2016.10.007 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01206383v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X16305935</els_id><sourcerecordid>S0022247X16305935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMoOKf_gKdcPbTmo20y8DKGbsLAi4K3kCZvXWrbjKQb7L83ZeLR0_vy8Dzvxw-he0pySmj12OZtr3XOUp-EnBBxgWaULKqMSMov0YwQxjJWiM9rdBNjSwilpaAztFyD72EMJ-wbHGAfvD0YN3zhbwgDdBG7AffeQofjXhuIeAAd8LgDXPvDYHU43aKrRncR7n7rHH28PL-vNtn2bf26Wm4zw4UcM0MKCaxgYJiUtqp4QevCWq1lU9ZClkDrmhcLUlojFo22QpS0SieWZSGaghs-Rw_nuTvdqX1wfdqtvHZqs9yqSSOUkYpLfqTJy85eE3yMAZq_ACVqAqZaNQFTE7BJS8BS6OkcSm_D0UFQ0TgYDFgXwIzKevdf_AdYP3MM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometry of reproducing kernels in model spaces near the boundary</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baranov, A. ; Hartmann, A. ; Kellay, K.</creator><creatorcontrib>Baranov, A. ; Hartmann, A. ; Kellay, K.</creatorcontrib><description>We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2016.10.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Complex Variables ; Mathematics ; Model space ; Overcompleteness ; Quasi-analyticity ; Reproducing kernel ; Riesz sequence ; Uniformly minimal system</subject><ispartof>Journal of mathematical analysis and applications, 2017-03, Vol.447 (2), p.971-987</ispartof><rights>2016 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</citedby><cites>FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</cites><orcidid>0000-0002-2558-5071 ; 0000-0003-2529-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X16305935$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01206383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranov, A.</creatorcontrib><creatorcontrib>Hartmann, A.</creatorcontrib><creatorcontrib>Kellay, K.</creatorcontrib><title>Geometry of reproducing kernels in model spaces near the boundary</title><title>Journal of mathematical analysis and applications</title><description>We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.</description><subject>Complex Variables</subject><subject>Mathematics</subject><subject>Model space</subject><subject>Overcompleteness</subject><subject>Quasi-analyticity</subject><subject>Reproducing kernel</subject><subject>Riesz sequence</subject><subject>Uniformly minimal system</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYxoMoOKf_gKdcPbTmo20y8DKGbsLAi4K3kCZvXWrbjKQb7L83ZeLR0_vy8Dzvxw-he0pySmj12OZtr3XOUp-EnBBxgWaULKqMSMov0YwQxjJWiM9rdBNjSwilpaAztFyD72EMJ-wbHGAfvD0YN3zhbwgDdBG7AffeQofjXhuIeAAd8LgDXPvDYHU43aKrRncR7n7rHH28PL-vNtn2bf26Wm4zw4UcM0MKCaxgYJiUtqp4QevCWq1lU9ZClkDrmhcLUlojFo22QpS0SieWZSGaghs-Rw_nuTvdqX1wfdqtvHZqs9yqSSOUkYpLfqTJy85eE3yMAZq_ACVqAqZaNQFTE7BJS8BS6OkcSm_D0UFQ0TgYDFgXwIzKevdf_AdYP3MM</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Baranov, A.</creator><creator>Hartmann, A.</creator><creator>Kellay, K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2558-5071</orcidid><orcidid>https://orcid.org/0000-0003-2529-5987</orcidid></search><sort><creationdate>20170315</creationdate><title>Geometry of reproducing kernels in model spaces near the boundary</title><author>Baranov, A. ; Hartmann, A. ; Kellay, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Variables</topic><topic>Mathematics</topic><topic>Model space</topic><topic>Overcompleteness</topic><topic>Quasi-analyticity</topic><topic>Reproducing kernel</topic><topic>Riesz sequence</topic><topic>Uniformly minimal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranov, A.</creatorcontrib><creatorcontrib>Hartmann, A.</creatorcontrib><creatorcontrib>Kellay, K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranov, A.</au><au>Hartmann, A.</au><au>Kellay, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of reproducing kernels in model spaces near the boundary</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>447</volume><issue>2</issue><spage>971</spage><epage>987</epage><pages>971-987</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2016.10.007</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2558-5071</orcidid><orcidid>https://orcid.org/0000-0003-2529-5987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2017-03, Vol.447 (2), p.971-987 |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01206383v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Complex Variables Mathematics Model space Overcompleteness Quasi-analyticity Reproducing kernel Riesz sequence Uniformly minimal system |
title | Geometry of reproducing kernels in model spaces near the boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20reproducing%20kernels%20in%20model%20spaces%20near%20the%20boundary&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Baranov,%20A.&rft.date=2017-03-15&rft.volume=447&rft.issue=2&rft.spage=971&rft.epage=987&rft.pages=971-987&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2016.10.007&rft_dat=%3Celsevier_hal_p%3ES0022247X16305935%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X16305935&rfr_iscdi=true |