Geometry of reproducing kernels in model spaces near the boundary

We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2017-03, Vol.447 (2), p.971-987
Hauptverfasser: Baranov, A., Hartmann, A., Kellay, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 987
container_issue 2
container_start_page 971
container_title Journal of mathematical analysis and applications
container_volume 447
creator Baranov, A.
Hartmann, A.
Kellay, K.
description We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.
doi_str_mv 10.1016/j.jmaa.2016.10.007
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01206383v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022247X16305935</els_id><sourcerecordid>S0022247X16305935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMoOKf_gKdcPbTmo20y8DKGbsLAi4K3kCZvXWrbjKQb7L83ZeLR0_vy8Dzvxw-he0pySmj12OZtr3XOUp-EnBBxgWaULKqMSMov0YwQxjJWiM9rdBNjSwilpaAztFyD72EMJ-wbHGAfvD0YN3zhbwgDdBG7AffeQofjXhuIeAAd8LgDXPvDYHU43aKrRncR7n7rHH28PL-vNtn2bf26Wm4zw4UcM0MKCaxgYJiUtqp4QevCWq1lU9ZClkDrmhcLUlojFo22QpS0SieWZSGaghs-Rw_nuTvdqX1wfdqtvHZqs9yqSSOUkYpLfqTJy85eE3yMAZq_ACVqAqZaNQFTE7BJS8BS6OkcSm_D0UFQ0TgYDFgXwIzKevdf_AdYP3MM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometry of reproducing kernels in model spaces near the boundary</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baranov, A. ; Hartmann, A. ; Kellay, K.</creator><creatorcontrib>Baranov, A. ; Hartmann, A. ; Kellay, K.</creatorcontrib><description>We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><identifier>DOI: 10.1016/j.jmaa.2016.10.007</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Complex Variables ; Mathematics ; Model space ; Overcompleteness ; Quasi-analyticity ; Reproducing kernel ; Riesz sequence ; Uniformly minimal system</subject><ispartof>Journal of mathematical analysis and applications, 2017-03, Vol.447 (2), p.971-987</ispartof><rights>2016 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</citedby><cites>FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</cites><orcidid>0000-0002-2558-5071 ; 0000-0003-2529-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022247X16305935$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01206383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baranov, A.</creatorcontrib><creatorcontrib>Hartmann, A.</creatorcontrib><creatorcontrib>Kellay, K.</creatorcontrib><title>Geometry of reproducing kernels in model spaces near the boundary</title><title>Journal of mathematical analysis and applications</title><description>We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.</description><subject>Complex Variables</subject><subject>Mathematics</subject><subject>Model space</subject><subject>Overcompleteness</subject><subject>Quasi-analyticity</subject><subject>Reproducing kernel</subject><subject>Riesz sequence</subject><subject>Uniformly minimal system</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYxoMoOKf_gKdcPbTmo20y8DKGbsLAi4K3kCZvXWrbjKQb7L83ZeLR0_vy8Dzvxw-he0pySmj12OZtr3XOUp-EnBBxgWaULKqMSMov0YwQxjJWiM9rdBNjSwilpaAztFyD72EMJ-wbHGAfvD0YN3zhbwgDdBG7AffeQofjXhuIeAAd8LgDXPvDYHU43aKrRncR7n7rHH28PL-vNtn2bf26Wm4zw4UcM0MKCaxgYJiUtqp4QevCWq1lU9ZClkDrmhcLUlojFo22QpS0SieWZSGaghs-Rw_nuTvdqX1wfdqtvHZqs9yqSSOUkYpLfqTJy85eE3yMAZq_ACVqAqZaNQFTE7BJS8BS6OkcSm_D0UFQ0TgYDFgXwIzKevdf_AdYP3MM</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Baranov, A.</creator><creator>Hartmann, A.</creator><creator>Kellay, K.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2558-5071</orcidid><orcidid>https://orcid.org/0000-0003-2529-5987</orcidid></search><sort><creationdate>20170315</creationdate><title>Geometry of reproducing kernels in model spaces near the boundary</title><author>Baranov, A. ; Hartmann, A. ; Kellay, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c048e242ec288d66341b4ddaa8f5b785e1bb34905dc79fad775165715547f43c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Variables</topic><topic>Mathematics</topic><topic>Model space</topic><topic>Overcompleteness</topic><topic>Quasi-analyticity</topic><topic>Reproducing kernel</topic><topic>Riesz sequence</topic><topic>Uniformly minimal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranov, A.</creatorcontrib><creatorcontrib>Hartmann, A.</creatorcontrib><creatorcontrib>Kellay, K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranov, A.</au><au>Hartmann, A.</au><au>Kellay, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of reproducing kernels in model spaces near the boundary</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>447</volume><issue>2</issue><spage>971</spage><epage>987</epage><pages>971-987</pages><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We study two geometric properties of reproducing kernels in model spaces Kθ where θ is an inner function: overcompleteness and existence of uniformly minimal systems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern–Clark point. It is shown that “uniformly minimal non-Riesz” sequences of reproducing kernels exist near each Ahern–Clark point which is not an analyticity point for θ, while overcompleteness may occur only near the Ahern–Clark points of infinite order and is equivalent to a “zero localization property”. In this context the notion of quasi-analyticity appears naturally, and as a by-product of our results we give conditions in the spirit of Ahern–Clark for the restriction of a model space to a radius to be a class of quasi-analyticity.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmaa.2016.10.007</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2558-5071</orcidid><orcidid>https://orcid.org/0000-0003-2529-5987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2017-03, Vol.447 (2), p.971-987
issn 0022-247X
1096-0813
language eng
recordid cdi_hal_primary_oai_HAL_hal_01206383v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Complex Variables
Mathematics
Model space
Overcompleteness
Quasi-analyticity
Reproducing kernel
Riesz sequence
Uniformly minimal system
title Geometry of reproducing kernels in model spaces near the boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20reproducing%20kernels%20in%20model%20spaces%20near%20the%20boundary&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Baranov,%20A.&rft.date=2017-03-15&rft.volume=447&rft.issue=2&rft.spage=971&rft.epage=987&rft.pages=971-987&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/10.1016/j.jmaa.2016.10.007&rft_dat=%3Celsevier_hal_p%3ES0022247X16305935%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022247X16305935&rfr_iscdi=true