A new hybrid PSO algorithm based on a stochastic Markov chain model

•Development of a new hybrid PSO algorithm.•Parallelism with a Markov chain model.•Testing of the newly developed algorithm on classic benchmark functions. Based on the recent research concerning the PageRank Algorithm used in the famous search engine Google [1], a new Inverse-PageRank-Particle Swar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) 2015-12, Vol.90, p.127-137
Hauptverfasser: Di Cesare, N., Chamoret, D., Domaszewski, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 127
container_title Advances in engineering software (1992)
container_volume 90
creator Di Cesare, N.
Chamoret, D.
Domaszewski, M.
description •Development of a new hybrid PSO algorithm.•Parallelism with a Markov chain model.•Testing of the newly developed algorithm on classic benchmark functions. Based on the recent research concerning the PageRank Algorithm used in the famous search engine Google [1], a new Inverse-PageRank-Particle Swarm Optimizer (I-PR-PSO) is presented in order to improve the performances of classic PSO. The resulted algorithm uses a stochastic Markov chain model to define an intelligent topological structure of the swarm’s population, in which the better particles have an important influence on the others. In the presented experiments, calculations on some benchmark functions classically used to test optimization methods are performed, and the results are compared to different versions of the standard PSO, that is using different topological structures of the population. The experimental results show that I-PR-PSO can converge quicker on the tested functions, and can find better results in the solution domain than its tested peers.
doi_str_mv 10.1016/j.advengsoft.2015.08.005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01202612v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965997815001234</els_id><sourcerecordid>1770333194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-819ad8f8c33750ca5a387b1eaa6a5f5702e482bf74946ea498ec78e77e5fcac53</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhnsAiTF4hxzhsOK0TZMexwQMaQgk4Bx5qbtmdM1IuqG9PZ2K4MjJsvX9v-QvihiHmAPPb9YxlntqV8FVXZwAFzGoGECcRCMocjEpCqnOovMQ1gA8g4SPotmUtfTF6sPS25K9vD4zbFbO267esCUGKplrGbLQOVNj6KxhT-g_3J71q23ZxpXUXESnFTaBLn_mOHq_v3ubzSeL54fH2XQxMVkquoniBZaqUiZNpQCDAlMll5wQcxSVkJBQppJlJbMiywmzQpGRiqQkURk0Ih1H10NvjY3eertBf9AOrZ5PF_p4A55AkvNkz3v2amC33n3uKHR6Y4OhpsGW3C5oLiWkacqLrEfVgBrvQvBU_XZz0Eeveq3_vOqjVw1K91776O0Qpf7tvSWvg7HUGiqtJ9Pp0tn_S74BxmqHHw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770333194</pqid></control><display><type>article</type><title>A new hybrid PSO algorithm based on a stochastic Markov chain model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Di Cesare, N. ; Chamoret, D. ; Domaszewski, M.</creator><creatorcontrib>Di Cesare, N. ; Chamoret, D. ; Domaszewski, M.</creatorcontrib><description>•Development of a new hybrid PSO algorithm.•Parallelism with a Markov chain model.•Testing of the newly developed algorithm on classic benchmark functions. Based on the recent research concerning the PageRank Algorithm used in the famous search engine Google [1], a new Inverse-PageRank-Particle Swarm Optimizer (I-PR-PSO) is presented in order to improve the performances of classic PSO. The resulted algorithm uses a stochastic Markov chain model to define an intelligent topological structure of the swarm’s population, in which the better particles have an important influence on the others. In the presented experiments, calculations on some benchmark functions classically used to test optimization methods are performed, and the results are compared to different versions of the standard PSO, that is using different topological structures of the population. The experimental results show that I-PR-PSO can converge quicker on the tested functions, and can find better results in the solution domain than its tested peers.</description><identifier>ISSN: 0965-9978</identifier><identifier>DOI: 10.1016/j.advengsoft.2015.08.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Markov chains ; Materials and structures in mechanics ; Mathematical models ; Mathematics ; Mechanical engineering ; Mechanics ; Mechanics of materials ; Optimization ; Optimization and Control ; PageRank ; Particle Swarm Optimization ; Physics ; Population topology ; Search engines ; Solid mechanics ; Stochasticity ; Structural mechanics ; Topology</subject><ispartof>Advances in engineering software (1992), 2015-12, Vol.90, p.127-137</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-819ad8f8c33750ca5a387b1eaa6a5f5702e482bf74946ea498ec78e77e5fcac53</citedby><cites>FETCH-LOGICAL-c435t-819ad8f8c33750ca5a387b1eaa6a5f5702e482bf74946ea498ec78e77e5fcac53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advengsoft.2015.08.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01202612$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Cesare, N.</creatorcontrib><creatorcontrib>Chamoret, D.</creatorcontrib><creatorcontrib>Domaszewski, M.</creatorcontrib><title>A new hybrid PSO algorithm based on a stochastic Markov chain model</title><title>Advances in engineering software (1992)</title><description>•Development of a new hybrid PSO algorithm.•Parallelism with a Markov chain model.•Testing of the newly developed algorithm on classic benchmark functions. Based on the recent research concerning the PageRank Algorithm used in the famous search engine Google [1], a new Inverse-PageRank-Particle Swarm Optimizer (I-PR-PSO) is presented in order to improve the performances of classic PSO. The resulted algorithm uses a stochastic Markov chain model to define an intelligent topological structure of the swarm’s population, in which the better particles have an important influence on the others. In the presented experiments, calculations on some benchmark functions classically used to test optimization methods are performed, and the results are compared to different versions of the standard PSO, that is using different topological structures of the population. The experimental results show that I-PR-PSO can converge quicker on the tested functions, and can find better results in the solution domain than its tested peers.</description><subject>Algorithms</subject><subject>Markov chains</subject><subject>Materials and structures in mechanics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>PageRank</subject><subject>Particle Swarm Optimization</subject><subject>Physics</subject><subject>Population topology</subject><subject>Search engines</subject><subject>Solid mechanics</subject><subject>Stochasticity</subject><subject>Structural mechanics</subject><subject>Topology</subject><issn>0965-9978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhnsAiTF4hxzhsOK0TZMexwQMaQgk4Bx5qbtmdM1IuqG9PZ2K4MjJsvX9v-QvihiHmAPPb9YxlntqV8FVXZwAFzGoGECcRCMocjEpCqnOovMQ1gA8g4SPotmUtfTF6sPS25K9vD4zbFbO267esCUGKplrGbLQOVNj6KxhT-g_3J71q23ZxpXUXESnFTaBLn_mOHq_v3ubzSeL54fH2XQxMVkquoniBZaqUiZNpQCDAlMll5wQcxSVkJBQppJlJbMiywmzQpGRiqQkURk0Ih1H10NvjY3eertBf9AOrZ5PF_p4A55AkvNkz3v2amC33n3uKHR6Y4OhpsGW3C5oLiWkacqLrEfVgBrvQvBU_XZz0Eeveq3_vOqjVw1K91776O0Qpf7tvSWvg7HUGiqtJ9Pp0tn_S74BxmqHHw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Di Cesare, N.</creator><creator>Chamoret, D.</creator><creator>Domaszewski, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20151201</creationdate><title>A new hybrid PSO algorithm based on a stochastic Markov chain model</title><author>Di Cesare, N. ; Chamoret, D. ; Domaszewski, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-819ad8f8c33750ca5a387b1eaa6a5f5702e482bf74946ea498ec78e77e5fcac53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Markov chains</topic><topic>Materials and structures in mechanics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>PageRank</topic><topic>Particle Swarm Optimization</topic><topic>Physics</topic><topic>Population topology</topic><topic>Search engines</topic><topic>Solid mechanics</topic><topic>Stochasticity</topic><topic>Structural mechanics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Cesare, N.</creatorcontrib><creatorcontrib>Chamoret, D.</creatorcontrib><creatorcontrib>Domaszewski, M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in engineering software (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Cesare, N.</au><au>Chamoret, D.</au><au>Domaszewski, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new hybrid PSO algorithm based on a stochastic Markov chain model</atitle><jtitle>Advances in engineering software (1992)</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>90</volume><spage>127</spage><epage>137</epage><pages>127-137</pages><issn>0965-9978</issn><abstract>•Development of a new hybrid PSO algorithm.•Parallelism with a Markov chain model.•Testing of the newly developed algorithm on classic benchmark functions. Based on the recent research concerning the PageRank Algorithm used in the famous search engine Google [1], a new Inverse-PageRank-Particle Swarm Optimizer (I-PR-PSO) is presented in order to improve the performances of classic PSO. The resulted algorithm uses a stochastic Markov chain model to define an intelligent topological structure of the swarm’s population, in which the better particles have an important influence on the others. In the presented experiments, calculations on some benchmark functions classically used to test optimization methods are performed, and the results are compared to different versions of the standard PSO, that is using different topological structures of the population. The experimental results show that I-PR-PSO can converge quicker on the tested functions, and can find better results in the solution domain than its tested peers.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.advengsoft.2015.08.005</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0965-9978
ispartof Advances in engineering software (1992), 2015-12, Vol.90, p.127-137
issn 0965-9978
language eng
recordid cdi_hal_primary_oai_HAL_hal_01202612v1
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Markov chains
Materials and structures in mechanics
Mathematical models
Mathematics
Mechanical engineering
Mechanics
Mechanics of materials
Optimization
Optimization and Control
PageRank
Particle Swarm Optimization
Physics
Population topology
Search engines
Solid mechanics
Stochasticity
Structural mechanics
Topology
title A new hybrid PSO algorithm based on a stochastic Markov chain model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20hybrid%20PSO%20algorithm%20based%20on%20a%20stochastic%20Markov%20chain%20model&rft.jtitle=Advances%20in%20engineering%20software%20(1992)&rft.au=Di%20Cesare,%20N.&rft.date=2015-12-01&rft.volume=90&rft.spage=127&rft.epage=137&rft.pages=127-137&rft.issn=0965-9978&rft_id=info:doi/10.1016/j.advengsoft.2015.08.005&rft_dat=%3Cproquest_hal_p%3E1770333194%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770333194&rft_id=info:pmid/&rft_els_id=S0965997815001234&rfr_iscdi=true