On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes

We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 2013-07, Vol.103 (4), p.428-467
Hauptverfasser: Chepoi, Victor, Hagen, Mark F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 4
container_start_page 428
container_title Journal of combinatorial theory. Series B
container_volume 103
creator Chepoi, Victor
Hagen, Mark F.
description We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.
doi_str_mv 10.1016/j.jctb.2013.04.003
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01199910v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895613000300</els_id><sourcerecordid>S0095895613000300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFOO9rDrZD_iBryUolYo9FKPErLJrE3ZbpZkW_Tfm7Xi0dPAzPMOMw8htwxSBozf79KdHuo0A5anUKQA-RmZMBA8AQHZOZkAiDKpRMkvyVUIO4hE_lBNyPu6o7iv0RjbfQTqGrqYb-5gRvWhRqrdvm_xEwO13eBo75056OEHGzzG9tGqCLXu4GOcDlu0nm6_evR9qzoM1-SiUW3Am986JW_PT5vFMlmtX14X81Wi4xFDIrg2IuM5lFWZM10bbqpCGa2w1KCzrKxZo7kuRFFi0TRNxWtRCMWyOGag8nxKZqe9W9XK3tu98l_SKSuX85Uce8CYEILBkUU2O7HauxA8Nn8BBnKUKXdylClHmRIKOaqaksdTCOMXR4teBm2x02isRz1I4-x_8W_pNH0z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chepoi, Victor ; Hagen, Mark F.</creator><creatorcontrib>Chepoi, Victor ; Hagen, Mark F.</creatorcontrib><description>We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1016/j.jctb.2013.04.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>CAT cube complex ; Colouring ; Combinatorics ; Contact graph ; Hyperplane ; Isometric embedding ; Mathematics ; Median graph</subject><ispartof>Journal of combinatorial theory. Series B, 2013-07, Vol.103 (4), p.428-467</ispartof><rights>2013 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</citedby><cites>FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jctb.2013.04.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01199910$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Hagen, Mark F.</creatorcontrib><title>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</title><title>Journal of combinatorial theory. Series B</title><description>We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.</description><subject>CAT cube complex</subject><subject>Colouring</subject><subject>Combinatorics</subject><subject>Contact graph</subject><subject>Hyperplane</subject><subject>Isometric embedding</subject><subject>Mathematics</subject><subject>Median graph</subject><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFOO9rDrZD_iBryUolYo9FKPErLJrE3ZbpZkW_Tfm7Xi0dPAzPMOMw8htwxSBozf79KdHuo0A5anUKQA-RmZMBA8AQHZOZkAiDKpRMkvyVUIO4hE_lBNyPu6o7iv0RjbfQTqGrqYb-5gRvWhRqrdvm_xEwO13eBo75056OEHGzzG9tGqCLXu4GOcDlu0nm6_evR9qzoM1-SiUW3Am986JW_PT5vFMlmtX14X81Wi4xFDIrg2IuM5lFWZM10bbqpCGa2w1KCzrKxZo7kuRFFi0TRNxWtRCMWyOGag8nxKZqe9W9XK3tu98l_SKSuX85Uce8CYEILBkUU2O7HauxA8Nn8BBnKUKXdylClHmRIKOaqaksdTCOMXR4teBm2x02isRz1I4-x_8W_pNH0z</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Chepoi, Victor</creator><creator>Hagen, Mark F.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20130701</creationdate><title>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</title><author>Chepoi, Victor ; Hagen, Mark F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CAT cube complex</topic><topic>Colouring</topic><topic>Combinatorics</topic><topic>Contact graph</topic><topic>Hyperplane</topic><topic>Isometric embedding</topic><topic>Mathematics</topic><topic>Median graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Hagen, Mark F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chepoi, Victor</au><au>Hagen, Mark F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>103</volume><issue>4</issue><spage>428</spage><epage>467</epage><pages>428-467</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jctb.2013.04.003</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-8956
ispartof Journal of combinatorial theory. Series B, 2013-07, Vol.103 (4), p.428-467
issn 0095-8956
1096-0902
language eng
recordid cdi_hal_primary_oai_HAL_hal_01199910v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects CAT cube complex
Colouring
Combinatorics
Contact graph
Hyperplane
Isometric embedding
Mathematics
Median graph
title On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20embeddings%20of%20CAT(0)%20cube%20complexes%20into%20products%20of%20trees%20via%20colouring%20their%20hyperplanes&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Chepoi,%20Victor&rft.date=2013-07-01&rft.volume=103&rft.issue=4&rft.spage=428&rft.epage=467&rft.pages=428-467&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1016/j.jctb.2013.04.003&rft_dat=%3Celsevier_hal_p%3ES0095895613000300%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895613000300&rfr_iscdi=true