On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes
We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series B 2013-07, Vol.103 (4), p.428-467 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 467 |
---|---|
container_issue | 4 |
container_start_page | 428 |
container_title | Journal of combinatorial theory. Series B |
container_volume | 103 |
creator | Chepoi, Victor Hagen, Mark F. |
description | We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper. |
doi_str_mv | 10.1016/j.jctb.2013.04.003 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01199910v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895613000300</els_id><sourcerecordid>S0095895613000300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFOO9rDrZD_iBryUolYo9FKPErLJrE3ZbpZkW_Tfm7Xi0dPAzPMOMw8htwxSBozf79KdHuo0A5anUKQA-RmZMBA8AQHZOZkAiDKpRMkvyVUIO4hE_lBNyPu6o7iv0RjbfQTqGrqYb-5gRvWhRqrdvm_xEwO13eBo75056OEHGzzG9tGqCLXu4GOcDlu0nm6_evR9qzoM1-SiUW3Am986JW_PT5vFMlmtX14X81Wi4xFDIrg2IuM5lFWZM10bbqpCGa2w1KCzrKxZo7kuRFFi0TRNxWtRCMWyOGag8nxKZqe9W9XK3tu98l_SKSuX85Uce8CYEILBkUU2O7HauxA8Nn8BBnKUKXdylClHmRIKOaqaksdTCOMXR4teBm2x02isRz1I4-x_8W_pNH0z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chepoi, Victor ; Hagen, Mark F.</creator><creatorcontrib>Chepoi, Victor ; Hagen, Mark F.</creatorcontrib><description>We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1016/j.jctb.2013.04.003</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>CAT cube complex ; Colouring ; Combinatorics ; Contact graph ; Hyperplane ; Isometric embedding ; Mathematics ; Median graph</subject><ispartof>Journal of combinatorial theory. Series B, 2013-07, Vol.103 (4), p.428-467</ispartof><rights>2013 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</citedby><cites>FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jctb.2013.04.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01199910$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Hagen, Mark F.</creatorcontrib><title>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</title><title>Journal of combinatorial theory. Series B</title><description>We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.</description><subject>CAT cube complex</subject><subject>Colouring</subject><subject>Combinatorics</subject><subject>Contact graph</subject><subject>Hyperplane</subject><subject>Isometric embedding</subject><subject>Mathematics</subject><subject>Median graph</subject><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFOO9rDrZD_iBryUolYo9FKPErLJrE3ZbpZkW_Tfm7Xi0dPAzPMOMw8htwxSBozf79KdHuo0A5anUKQA-RmZMBA8AQHZOZkAiDKpRMkvyVUIO4hE_lBNyPu6o7iv0RjbfQTqGrqYb-5gRvWhRqrdvm_xEwO13eBo75056OEHGzzG9tGqCLXu4GOcDlu0nm6_evR9qzoM1-SiUW3Am986JW_PT5vFMlmtX14X81Wi4xFDIrg2IuM5lFWZM10bbqpCGa2w1KCzrKxZo7kuRFFi0TRNxWtRCMWyOGag8nxKZqe9W9XK3tu98l_SKSuX85Uce8CYEILBkUU2O7HauxA8Nn8BBnKUKXdylClHmRIKOaqaksdTCOMXR4teBm2x02isRz1I4-x_8W_pNH0z</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Chepoi, Victor</creator><creator>Hagen, Mark F.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20130701</creationdate><title>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</title><author>Chepoi, Victor ; Hagen, Mark F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-96cd9263058531cbd6d84adcae5c0c225b1fc6c4945e4fff86b949a125c010a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CAT cube complex</topic><topic>Colouring</topic><topic>Combinatorics</topic><topic>Contact graph</topic><topic>Hyperplane</topic><topic>Isometric embedding</topic><topic>Mathematics</topic><topic>Median graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chepoi, Victor</creatorcontrib><creatorcontrib>Hagen, Mark F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chepoi, Victor</au><au>Hagen, Mark F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>103</volume><issue>4</issue><spage>428</spage><epage>467</epage><pages>428-467</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>We prove that the contact graph of a 2-dimensional CAT(0) cube complex X of maximum degree Δ can be coloured with at most ϵ(Δ)=MΔ26 colours, for a fixed constant M. This implies that X (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ) trees, and that the event structure whose domain is X admits a nice labelling with ϵ(Δ) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jctb.2013.04.003</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-8956 |
ispartof | Journal of combinatorial theory. Series B, 2013-07, Vol.103 (4), p.428-467 |
issn | 0095-8956 1096-0902 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01199910v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | CAT cube complex Colouring Combinatorics Contact graph Hyperplane Isometric embedding Mathematics Median graph |
title | On embeddings of CAT(0) cube complexes into products of trees via colouring their hyperplanes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20embeddings%20of%20CAT(0)%20cube%20complexes%20into%20products%20of%20trees%20via%20colouring%20their%20hyperplanes&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Chepoi,%20Victor&rft.date=2013-07-01&rft.volume=103&rft.issue=4&rft.spage=428&rft.epage=467&rft.pages=428-467&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1016/j.jctb.2013.04.003&rft_dat=%3Celsevier_hal_p%3ES0095895613000300%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895613000300&rfr_iscdi=true |