The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids

Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2012-10, Vol.21 (20), p.5098-5109
Hauptverfasser: MARTOS, FLORENT, MUNOZ, FRANÇOIS, PAILLER, THIERRY, KOTTKE, INGRID, GONNEAU, CÉDRIC, SELOSSE, MARC-ANDRÉ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5109
container_issue 20
container_start_page 5098
container_title Molecular ecology
container_volume 21
creator MARTOS, FLORENT
MUNOZ, FRANÇOIS
PAILLER, THIERRY
KOTTKE, INGRID
GONNEAU, CÉDRIC
SELOSSE, MARC-ANDRÉ
description Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses. See also the Perspective by Leake and Cameron
doi_str_mv 10.1111/j.1365-294X.2012.05692.x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01199338v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237089329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5682-daf5957dce04ccdf65d6ecffb6331603e81a2bedfd50b459d79d1a10cbd13ac23</originalsourceid><addsrcrecordid>eNqNkU9vEzEQxVcIREPhKyBLXOCwwWPH3vWBQ5WWFimFA-HPzXJsr9bpZh1sb5Pw6fGSkgMX8MXW-PfezOgVBQI8hXzerqdAOSuJmH2fEgxkihkXZLp_VExOH4-LCRaclIBrelY8i3GNMVDC2NPijJCKs4rTSRGWrUXBdxb5Btmt27aH5OIGuR6poFuXrE5DsEj1Btl73w3J-V6FA9K-jyko1ye0c6nN_OagfQit-6k61Nu08-Eujq4p-K3TuehHQxOfF08a1UX74uE-L768v1rOb8rFp-sP84tFqRmvSWlUwwSrjLZ4prVpODPc6qZZcUqBY2prUGRlTWMYXs2YMJUwoADrlQGqNKHnxZujb6s6uQ1uk8eWXjl5c7GQYw0DCEFpfQ-ZfX1kt8H_GGxMcuOitl2neuuHKIHQCteCEvFvFAgjVHDAGX31F7r2Q-jz0hJw3o1hWo1z1kdKBx9jsM1pWMByjFuu5ZiqHFOVY9zyd9xyn6UvHxoMq401J-GffDPw7gjsXGcP_20sb6_m4yvry6PexWT3J70Kd5JXtGLy28drCV8vl5_5Jchb-gs-38n-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1095750372</pqid></control><display><type>article</type><title>The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>MARTOS, FLORENT ; MUNOZ, FRANÇOIS ; PAILLER, THIERRY ; KOTTKE, INGRID ; GONNEAU, CÉDRIC ; SELOSSE, MARC-ANDRÉ</creator><creatorcontrib>MARTOS, FLORENT ; MUNOZ, FRANÇOIS ; PAILLER, THIERRY ; KOTTKE, INGRID ; GONNEAU, CÉDRIC ; SELOSSE, MARC-ANDRÉ</creatorcontrib><description>Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses. See also the Perspective by Leake and Cameron</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2012.05692.x</identifier><identifier>PMID: 22765763</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biological Evolution ; co-evolution ; DNA, Fungal - genetics ; DNA, Ribosomal Spacer - genetics ; Evolutionary biology ; Fungi ; interaction networks ; Life Sciences ; Models, Genetic ; modularity ; Molecular Sequence Data ; Mycorrhizae - classification ; Mycorrhizae - genetics ; nestedness ; orchid mycorrhizal symbiosis ; Orchidaceae ; Orchidaceae - genetics ; Orchidaceae - microbiology ; phylogenetic bipartite signal ; Phylogenetics ; Phylogeny ; Plant ecology ; Plant Roots - microbiology ; Reunion ; Sequence Analysis, DNA ; Symbiosis - genetics ; Taxonomy ; Vegetal Biology</subject><ispartof>Molecular ecology, 2012-10, Vol.21 (20), p.5098-5109</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5682-daf5957dce04ccdf65d6ecffb6331603e81a2bedfd50b459d79d1a10cbd13ac23</citedby><cites>FETCH-LOGICAL-c5682-daf5957dce04ccdf65d6ecffb6331603e81a2bedfd50b459d79d1a10cbd13ac23</cites><orcidid>0000-0003-1213-5466 ; 0000-0003-3471-9067 ; 0000-0002-6854-9126 ; 0000-0001-8776-4705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-294X.2012.05692.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-294X.2012.05692.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22765763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-reunion.fr/hal-01199338$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>MARTOS, FLORENT</creatorcontrib><creatorcontrib>MUNOZ, FRANÇOIS</creatorcontrib><creatorcontrib>PAILLER, THIERRY</creatorcontrib><creatorcontrib>KOTTKE, INGRID</creatorcontrib><creatorcontrib>GONNEAU, CÉDRIC</creatorcontrib><creatorcontrib>SELOSSE, MARC-ANDRÉ</creatorcontrib><title>The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses. See also the Perspective by Leake and Cameron</description><subject>Biological Evolution</subject><subject>co-evolution</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Ribosomal Spacer - genetics</subject><subject>Evolutionary biology</subject><subject>Fungi</subject><subject>interaction networks</subject><subject>Life Sciences</subject><subject>Models, Genetic</subject><subject>modularity</subject><subject>Molecular Sequence Data</subject><subject>Mycorrhizae - classification</subject><subject>Mycorrhizae - genetics</subject><subject>nestedness</subject><subject>orchid mycorrhizal symbiosis</subject><subject>Orchidaceae</subject><subject>Orchidaceae - genetics</subject><subject>Orchidaceae - microbiology</subject><subject>phylogenetic bipartite signal</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plant ecology</subject><subject>Plant Roots - microbiology</subject><subject>Reunion</subject><subject>Sequence Analysis, DNA</subject><subject>Symbiosis - genetics</subject><subject>Taxonomy</subject><subject>Vegetal Biology</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9vEzEQxVcIREPhKyBLXOCwwWPH3vWBQ5WWFimFA-HPzXJsr9bpZh1sb5Pw6fGSkgMX8MXW-PfezOgVBQI8hXzerqdAOSuJmH2fEgxkihkXZLp_VExOH4-LCRaclIBrelY8i3GNMVDC2NPijJCKs4rTSRGWrUXBdxb5Btmt27aH5OIGuR6poFuXrE5DsEj1Btl73w3J-V6FA9K-jyko1ye0c6nN_OagfQit-6k61Nu08-Eujq4p-K3TuehHQxOfF08a1UX74uE-L768v1rOb8rFp-sP84tFqRmvSWlUwwSrjLZ4prVpODPc6qZZcUqBY2prUGRlTWMYXs2YMJUwoADrlQGqNKHnxZujb6s6uQ1uk8eWXjl5c7GQYw0DCEFpfQ-ZfX1kt8H_GGxMcuOitl2neuuHKIHQCteCEvFvFAgjVHDAGX31F7r2Q-jz0hJw3o1hWo1z1kdKBx9jsM1pWMByjFuu5ZiqHFOVY9zyd9xyn6UvHxoMq401J-GffDPw7gjsXGcP_20sb6_m4yvry6PexWT3J70Kd5JXtGLy28drCV8vl5_5Jchb-gs-38n-</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>MARTOS, FLORENT</creator><creator>MUNOZ, FRANÇOIS</creator><creator>PAILLER, THIERRY</creator><creator>KOTTKE, INGRID</creator><creator>GONNEAU, CÉDRIC</creator><creator>SELOSSE, MARC-ANDRÉ</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1213-5466</orcidid><orcidid>https://orcid.org/0000-0003-3471-9067</orcidid><orcidid>https://orcid.org/0000-0002-6854-9126</orcidid><orcidid>https://orcid.org/0000-0001-8776-4705</orcidid></search><sort><creationdate>201210</creationdate><title>The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids</title><author>MARTOS, FLORENT ; MUNOZ, FRANÇOIS ; PAILLER, THIERRY ; KOTTKE, INGRID ; GONNEAU, CÉDRIC ; SELOSSE, MARC-ANDRÉ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5682-daf5957dce04ccdf65d6ecffb6331603e81a2bedfd50b459d79d1a10cbd13ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological Evolution</topic><topic>co-evolution</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Ribosomal Spacer - genetics</topic><topic>Evolutionary biology</topic><topic>Fungi</topic><topic>interaction networks</topic><topic>Life Sciences</topic><topic>Models, Genetic</topic><topic>modularity</topic><topic>Molecular Sequence Data</topic><topic>Mycorrhizae - classification</topic><topic>Mycorrhizae - genetics</topic><topic>nestedness</topic><topic>orchid mycorrhizal symbiosis</topic><topic>Orchidaceae</topic><topic>Orchidaceae - genetics</topic><topic>Orchidaceae - microbiology</topic><topic>phylogenetic bipartite signal</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plant ecology</topic><topic>Plant Roots - microbiology</topic><topic>Reunion</topic><topic>Sequence Analysis, DNA</topic><topic>Symbiosis - genetics</topic><topic>Taxonomy</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MARTOS, FLORENT</creatorcontrib><creatorcontrib>MUNOZ, FRANÇOIS</creatorcontrib><creatorcontrib>PAILLER, THIERRY</creatorcontrib><creatorcontrib>KOTTKE, INGRID</creatorcontrib><creatorcontrib>GONNEAU, CÉDRIC</creatorcontrib><creatorcontrib>SELOSSE, MARC-ANDRÉ</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MARTOS, FLORENT</au><au>MUNOZ, FRANÇOIS</au><au>PAILLER, THIERRY</au><au>KOTTKE, INGRID</au><au>GONNEAU, CÉDRIC</au><au>SELOSSE, MARC-ANDRÉ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2012-10</date><risdate>2012</risdate><volume>21</volume><issue>20</issue><spage>5098</spage><epage>5109</epage><pages>5098-5109</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses. See also the Perspective by Leake and Cameron</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22765763</pmid><doi>10.1111/j.1365-294X.2012.05692.x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1213-5466</orcidid><orcidid>https://orcid.org/0000-0003-3471-9067</orcidid><orcidid>https://orcid.org/0000-0002-6854-9126</orcidid><orcidid>https://orcid.org/0000-0001-8776-4705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2012-10, Vol.21 (20), p.5098-5109
issn 0962-1083
1365-294X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01199338v1
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological Evolution
co-evolution
DNA, Fungal - genetics
DNA, Ribosomal Spacer - genetics
Evolutionary biology
Fungi
interaction networks
Life Sciences
Models, Genetic
modularity
Molecular Sequence Data
Mycorrhizae - classification
Mycorrhizae - genetics
nestedness
orchid mycorrhizal symbiosis
Orchidaceae
Orchidaceae - genetics
Orchidaceae - microbiology
phylogenetic bipartite signal
Phylogenetics
Phylogeny
Plant ecology
Plant Roots - microbiology
Reunion
Sequence Analysis, DNA
Symbiosis - genetics
Taxonomy
Vegetal Biology
title The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20epiphytism%20in%20architecture%20and%20evolutionary%20constraint%20within%20mycorrhizal%20networks%20of%20tropical%20orchids&rft.jtitle=Molecular%20ecology&rft.au=MARTOS,%20FLORENT&rft.date=2012-10&rft.volume=21&rft.issue=20&rft.spage=5098&rft.epage=5109&rft.pages=5098-5109&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2012.05692.x&rft_dat=%3Cproquest_hal_p%3E1237089329%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1095750372&rft_id=info:pmid/22765763&rfr_iscdi=true