Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basi...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (7), p.075422 (1-18, Article 075422 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 7 |
container_start_page | 075422 (1 |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 92 |
creator | Ljungberg, M. P. Koval, P. Ferrari, F. Foerster, D. Sánchez-Portal, D. |
description | The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation. |
doi_str_mv | 10.1103/PhysRevB.92.075422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01192976v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770311893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA5x8hEOK147j-NhWQJEqgQpI3CyTrqlRGpc4qdS_x6XAZXe182YOQ8glsBEAEzdPq11c4HYy0nzElMw5PyIDkJJlXMi343QzXWYMOJySsxg_GYNc53xAFtP-3VdZrGztmw_qO2xt57dIY6j7zoeGBke7FdIJppk923qDiaH41dsf2YWWOt8kI4272OE6npMTZ-uIF797SF7vbl-ms2z-eP8wHc-zSsiyyySWVrBSVLLQEnLhrCwqbZ2SpbPLQnEUWlgooECFLlmWS55UwR2o0hVODMn1IXdla7Np_dq2OxOsN7Px3Ox_DEBzrYotJPbqwG7a8NVj7Mzaxwrr2jYY-mhAKSYASi0Syg9o1YYYW3T_2cDMvmzzV7bR3BzKFt-RLXQi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770311893</pqid></control><display><type>article</type><title>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</title><source>American Physical Society Journals</source><creator>Ljungberg, M. P. ; Koval, P. ; Ferrari, F. ; Foerster, D. ; Sánchez-Portal, D.</creator><creatorcontrib>Ljungberg, M. P. ; Koval, P. ; Ferrari, F. ; Foerster, D. ; Sánchez-Portal, D.</creatorcontrib><description>The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.92.075422</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Bethe-Salpeter equation ; BSE ; Condensed Matter ; Excitation ; Iterative methods ; Materials Science ; Mathematical analysis ; Orbitals ; Physics ; Recursion</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), p.075422 (1-18, Article 075422</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</citedby><cites>FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01192976$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ljungberg, M. P.</creatorcontrib><creatorcontrib>Koval, P.</creatorcontrib><creatorcontrib>Ferrari, F.</creatorcontrib><creatorcontrib>Foerster, D.</creatorcontrib><creatorcontrib>Sánchez-Portal, D.</creatorcontrib><title>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</title><title>Physical review. B, Condensed matter and materials physics</title><description>The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.</description><subject>Bethe-Salpeter equation</subject><subject>BSE</subject><subject>Condensed Matter</subject><subject>Excitation</subject><subject>Iterative methods</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Physics</subject><subject>Recursion</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqXwA5x8hEOK147j-NhWQJEqgQpI3CyTrqlRGpc4qdS_x6XAZXe182YOQ8glsBEAEzdPq11c4HYy0nzElMw5PyIDkJJlXMi343QzXWYMOJySsxg_GYNc53xAFtP-3VdZrGztmw_qO2xt57dIY6j7zoeGBke7FdIJppk923qDiaH41dsf2YWWOt8kI4272OE6npMTZ-uIF797SF7vbl-ms2z-eP8wHc-zSsiyyySWVrBSVLLQEnLhrCwqbZ2SpbPLQnEUWlgooECFLlmWS55UwR2o0hVODMn1IXdla7Np_dq2OxOsN7Px3Ox_DEBzrYotJPbqwG7a8NVj7Mzaxwrr2jYY-mhAKSYASi0Syg9o1YYYW3T_2cDMvmzzV7bR3BzKFt-RLXQi</recordid><startdate>20150817</startdate><enddate>20150817</enddate><creator>Ljungberg, M. P.</creator><creator>Koval, P.</creator><creator>Ferrari, F.</creator><creator>Foerster, D.</creator><creator>Sánchez-Portal, D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150817</creationdate><title>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</title><author>Ljungberg, M. P. ; Koval, P. ; Ferrari, F. ; Foerster, D. ; Sánchez-Portal, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bethe-Salpeter equation</topic><topic>BSE</topic><topic>Condensed Matter</topic><topic>Excitation</topic><topic>Iterative methods</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Physics</topic><topic>Recursion</topic><toplevel>online_resources</toplevel><creatorcontrib>Ljungberg, M. P.</creatorcontrib><creatorcontrib>Koval, P.</creatorcontrib><creatorcontrib>Ferrari, F.</creatorcontrib><creatorcontrib>Foerster, D.</creatorcontrib><creatorcontrib>Sánchez-Portal, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ljungberg, M. P.</au><au>Koval, P.</au><au>Ferrari, F.</au><au>Foerster, D.</au><au>Sánchez-Portal, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-08-17</date><risdate>2015</risdate><volume>92</volume><issue>7</issue><spage>075422 (1</spage><epage>18</epage><pages>075422 (1-18</pages><artnum>075422</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.075422</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), p.075422 (1-18, Article 075422 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01192976v1 |
source | American Physical Society Journals |
subjects | Bethe-Salpeter equation BSE Condensed Matter Excitation Iterative methods Materials Science Mathematical analysis Orbitals Physics Recursion |
title | Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic-scaling%20iterative%20solution%20of%20the%20Bethe-Salpeter%20equation%20for%20finite%20systems&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Ljungberg,%20M.%20P.&rft.date=2015-08-17&rft.volume=92&rft.issue=7&rft.spage=075422%20(1&rft.epage=18&rft.pages=075422%20(1-18&rft.artnum=075422&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.075422&rft_dat=%3Cproquest_hal_p%3E1770311893%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770311893&rft_id=info:pmid/&rfr_iscdi=true |