Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems

The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-08, Vol.92 (7), p.075422 (1-18, Article 075422
Hauptverfasser: Ljungberg, M. P., Koval, P., Ferrari, F., Foerster, D., Sánchez-Portal, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 7
container_start_page 075422 (1
container_title Physical review. B, Condensed matter and materials physics
container_volume 92
creator Ljungberg, M. P.
Koval, P.
Ferrari, F.
Foerster, D.
Sánchez-Portal, D.
description The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.
doi_str_mv 10.1103/PhysRevB.92.075422
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01192976v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770311893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA5x8hEOK147j-NhWQJEqgQpI3CyTrqlRGpc4qdS_x6XAZXe182YOQ8glsBEAEzdPq11c4HYy0nzElMw5PyIDkJJlXMi343QzXWYMOJySsxg_GYNc53xAFtP-3VdZrGztmw_qO2xt57dIY6j7zoeGBke7FdIJppk923qDiaH41dsf2YWWOt8kI4272OE6npMTZ-uIF797SF7vbl-ms2z-eP8wHc-zSsiyyySWVrBSVLLQEnLhrCwqbZ2SpbPLQnEUWlgooECFLlmWS55UwR2o0hVODMn1IXdla7Np_dq2OxOsN7Px3Ox_DEBzrYotJPbqwG7a8NVj7Mzaxwrr2jYY-mhAKSYASi0Syg9o1YYYW3T_2cDMvmzzV7bR3BzKFt-RLXQi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770311893</pqid></control><display><type>article</type><title>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</title><source>American Physical Society Journals</source><creator>Ljungberg, M. P. ; Koval, P. ; Ferrari, F. ; Foerster, D. ; Sánchez-Portal, D.</creator><creatorcontrib>Ljungberg, M. P. ; Koval, P. ; Ferrari, F. ; Foerster, D. ; Sánchez-Portal, D.</creatorcontrib><description>The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.92.075422</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Bethe-Salpeter equation ; BSE ; Condensed Matter ; Excitation ; Iterative methods ; Materials Science ; Mathematical analysis ; Orbitals ; Physics ; Recursion</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), p.075422 (1-18, Article 075422</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</citedby><cites>FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01192976$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ljungberg, M. P.</creatorcontrib><creatorcontrib>Koval, P.</creatorcontrib><creatorcontrib>Ferrari, F.</creatorcontrib><creatorcontrib>Foerster, D.</creatorcontrib><creatorcontrib>Sánchez-Portal, D.</creatorcontrib><title>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</title><title>Physical review. B, Condensed matter and materials physics</title><description>The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.</description><subject>Bethe-Salpeter equation</subject><subject>BSE</subject><subject>Condensed Matter</subject><subject>Excitation</subject><subject>Iterative methods</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Physics</subject><subject>Recursion</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqXwA5x8hEOK147j-NhWQJEqgQpI3CyTrqlRGpc4qdS_x6XAZXe182YOQ8glsBEAEzdPq11c4HYy0nzElMw5PyIDkJJlXMi343QzXWYMOJySsxg_GYNc53xAFtP-3VdZrGztmw_qO2xt57dIY6j7zoeGBke7FdIJppk923qDiaH41dsf2YWWOt8kI4272OE6npMTZ-uIF797SF7vbl-ms2z-eP8wHc-zSsiyyySWVrBSVLLQEnLhrCwqbZ2SpbPLQnEUWlgooECFLlmWS55UwR2o0hVODMn1IXdla7Np_dq2OxOsN7Px3Ox_DEBzrYotJPbqwG7a8NVj7Mzaxwrr2jYY-mhAKSYASi0Syg9o1YYYW3T_2cDMvmzzV7bR3BzKFt-RLXQi</recordid><startdate>20150817</startdate><enddate>20150817</enddate><creator>Ljungberg, M. P.</creator><creator>Koval, P.</creator><creator>Ferrari, F.</creator><creator>Foerster, D.</creator><creator>Sánchez-Portal, D.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20150817</creationdate><title>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</title><author>Ljungberg, M. P. ; Koval, P. ; Ferrari, F. ; Foerster, D. ; Sánchez-Portal, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-5e8a3083c5695143fa56c9af758fad672e393a1616e7ef358dd2af732f178f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bethe-Salpeter equation</topic><topic>BSE</topic><topic>Condensed Matter</topic><topic>Excitation</topic><topic>Iterative methods</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Physics</topic><topic>Recursion</topic><toplevel>online_resources</toplevel><creatorcontrib>Ljungberg, M. P.</creatorcontrib><creatorcontrib>Koval, P.</creatorcontrib><creatorcontrib>Ferrari, F.</creatorcontrib><creatorcontrib>Foerster, D.</creatorcontrib><creatorcontrib>Sánchez-Portal, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ljungberg, M. P.</au><au>Koval, P.</au><au>Ferrari, F.</au><au>Foerster, D.</au><au>Sánchez-Portal, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2015-08-17</date><risdate>2015</risdate><volume>92</volume><issue>7</issue><spage>075422 (1</spage><epage>18</epage><pages>075422 (1-18</pages><artnum>075422</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The Bethe-Salpeter equation (BSE) is currently the state of the art in the description of neutral electronic excitations in both solids and large finite systems. It is capable of accurately treating charget-ransfer excitations that present difficulties for simpler approaches. We present a local basis set formulation of the BSE for molecules where the optical spectrum is computed with the iterative Haydock recursion scheme, leading to a low computational complexity and memory footprint. Using a variant of the algorithm we can go beyond the Tamm-Dancoff approximation. We rederive the recursion relations for general matrix elements of a resolvent, show how they translate into continued fractions, and study the convergence of the method with the number of recursion coefficients and the role of different terminators. Due to the locality of the basis functions the computational cost of each iteration scales asymptotically as O(N super(3)) with the number of atoms, while the number of iterations typically is much lower than the size of the underlying electron-hole basis. In practice we see that, even for systems with thousands of orbitals, the runtime will be dominated by the O(N super(2)) operation of applying the Coulomb kernel in the atomic orbital representation.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.075422</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, Condensed matter and materials physics, 2015-08, Vol.92 (7), p.075422 (1-18, Article 075422
issn 1098-0121
1550-235X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01192976v1
source American Physical Society Journals
subjects Bethe-Salpeter equation
BSE
Condensed Matter
Excitation
Iterative methods
Materials Science
Mathematical analysis
Orbitals
Physics
Recursion
title Cubic-scaling iterative solution of the Bethe-Salpeter equation for finite systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A36%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cubic-scaling%20iterative%20solution%20of%20the%20Bethe-Salpeter%20equation%20for%20finite%20systems&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Ljungberg,%20M.%20P.&rft.date=2015-08-17&rft.volume=92&rft.issue=7&rft.spage=075422%20(1&rft.epage=18&rft.pages=075422%20(1-18&rft.artnum=075422&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.075422&rft_dat=%3Cproquest_hal_p%3E1770311893%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770311893&rft_id=info:pmid/&rfr_iscdi=true