Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations
Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divale...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2015-08, Vol.26 (8), p.223-11, Article 223 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 8 |
container_start_page | 223 |
container_title | Journal of materials science. Materials in medicine |
container_volume | 26 |
creator | Brouillet, Fabien Laurencin, Danielle Grossin, David Drouet, Christophe Estournes, Claude Chevallier, Geoffroy Rey, Christian |
description | Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1–20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.
Graphical Abstract |
doi_str_mv | 10.1007/s10856-015-5553-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01186448v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808088695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-5c05bb0a8de9bd62257bf9efa6e848f7e4631c805654cadb4989f97bfe0620073</originalsourceid><addsrcrecordid>eNqNkkFvFSEQx4nR2NfqB_BiSLy0h1XYBRa81aZak5doUj2TgWV91GVZYZ_J8wv4tWXd2hgTo-EAA7-ZYWb-CD2h5DklpH2RKZFcVITyinPeVOoe2lDeNhWTjbyPNkTxtmK8IUfoOOcbQghTnD9ER7WoW1pTsUHfX_kYfHCztxgmmP3sKgPZddjGMMVcbBxgdsnDkHE0M_ixPJoDzhOkz3gaIAfA2Y8LM37Cp9fvr89e4ml3yN5Gu3PBWxgwjB0Ozu5g_GmWQwK7uHwrOeOYH6EHfcngHt_uJ-jj68sPF1fV9t2btxfn28pyyueKW8KNISA7p0wn6pq3pleuB-Ekk33rmGiolYQLzix0himpelUYR0RdWtacoLM17g4GPSUfIB10BK-vzrd6uSOUSsGY_EoLe7qyU4pf9i7POvhs3TDA6OI-aypJWVIo_m-0LX-qGRPyP1DCmjInIgr67A_0Ju7TWPpTKMqoqmnDCkVXyqaYc3L9XV2U6EUnetVJKY3rRSdaFZ-nt5H3JrjuzuOXMApQr0CelrG69Fvqv0b9AV3oyDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714192134</pqid></control><display><type>article</type><title>Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Brouillet, Fabien ; Laurencin, Danielle ; Grossin, David ; Drouet, Christophe ; Estournes, Claude ; Chevallier, Geoffroy ; Rey, Christian</creator><creatorcontrib>Brouillet, Fabien ; Laurencin, Danielle ; Grossin, David ; Drouet, Christophe ; Estournes, Claude ; Chevallier, Geoffroy ; Rey, Christian</creatorcontrib><description>Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1–20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.
Graphical Abstract</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-015-5553-9</identifier><identifier>PMID: 26271216</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apatite ; Apatites - chemical synthesis ; Apatites - chemistry ; Bioceramics ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomechanical Phenomena ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Biomimetic Materials - chemical synthesis ; Biomimetic Materials - chemistry ; Biomimetics ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Cellulose ; Ceramics ; Ceramics - chemical synthesis ; Ceramics - chemistry ; Chemical Sciences ; Chemistry and Materials Science ; Composite materials ; Composites ; Glass ; Humans ; Magnetic Resonance Spectroscopy ; Material chemistry ; Materials Science ; Materials Testing ; Mechanical properties ; Microscopy, Electron, Scanning ; Nanocomposites - chemistry ; Nanocomposites - ultrastructure ; Nanocrystals ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Natural Materials ; Plasma Gases ; Plasma sintering ; Polymer matrix composites ; Polymer Sciences ; Powder Diffraction ; Regenerative Medicine/Tissue Engineering ; Spark plasma sintering ; Spectroscopy, Fourier Transform Infrared ; Surface Properties ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Journal of materials science. Materials in medicine, 2015-08, Vol.26 (8), p.223-11, Article 223</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-5c05bb0a8de9bd62257bf9efa6e848f7e4631c805654cadb4989f97bfe0620073</citedby><cites>FETCH-LOGICAL-c515t-5c05bb0a8de9bd62257bf9efa6e848f7e4631c805654cadb4989f97bfe0620073</cites><orcidid>0000-0002-8471-8719 ; 0000-0002-7445-0528 ; 0000-0002-4320-2919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-015-5553-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-015-5553-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26271216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01186448$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brouillet, Fabien</creatorcontrib><creatorcontrib>Laurencin, Danielle</creatorcontrib><creatorcontrib>Grossin, David</creatorcontrib><creatorcontrib>Drouet, Christophe</creatorcontrib><creatorcontrib>Estournes, Claude</creatorcontrib><creatorcontrib>Chevallier, Geoffroy</creatorcontrib><creatorcontrib>Rey, Christian</creatorcontrib><title>Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1–20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.
Graphical Abstract</description><subject>Apatite</subject><subject>Apatites - chemical synthesis</subject><subject>Apatites - chemistry</subject><subject>Bioceramics</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetics</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Ceramics - chemical synthesis</subject><subject>Ceramics - chemistry</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Glass</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Mechanical properties</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - ultrastructure</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Natural Materials</subject><subject>Plasma Gases</subject><subject>Plasma sintering</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Powder Diffraction</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Spark plasma sintering</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkkFvFSEQx4nR2NfqB_BiSLy0h1XYBRa81aZak5doUj2TgWV91GVZYZ_J8wv4tWXd2hgTo-EAA7-ZYWb-CD2h5DklpH2RKZFcVITyinPeVOoe2lDeNhWTjbyPNkTxtmK8IUfoOOcbQghTnD9ER7WoW1pTsUHfX_kYfHCztxgmmP3sKgPZddjGMMVcbBxgdsnDkHE0M_ixPJoDzhOkz3gaIAfA2Y8LM37Cp9fvr89e4ml3yN5Gu3PBWxgwjB0Ozu5g_GmWQwK7uHwrOeOYH6EHfcngHt_uJ-jj68sPF1fV9t2btxfn28pyyueKW8KNISA7p0wn6pq3pleuB-Ekk33rmGiolYQLzix0himpelUYR0RdWtacoLM17g4GPSUfIB10BK-vzrd6uSOUSsGY_EoLe7qyU4pf9i7POvhs3TDA6OI-aypJWVIo_m-0LX-qGRPyP1DCmjInIgr67A_0Ju7TWPpTKMqoqmnDCkVXyqaYc3L9XV2U6EUnetVJKY3rRSdaFZ-nt5H3JrjuzuOXMApQr0CelrG69Fvqv0b9AV3oyDE</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Brouillet, Fabien</creator><creator>Laurencin, Danielle</creator><creator>Grossin, David</creator><creator>Drouet, Christophe</creator><creator>Estournes, Claude</creator><creator>Chevallier, Geoffroy</creator><creator>Rey, Christian</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8471-8719</orcidid><orcidid>https://orcid.org/0000-0002-7445-0528</orcidid><orcidid>https://orcid.org/0000-0002-4320-2919</orcidid></search><sort><creationdate>20150801</creationdate><title>Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations</title><author>Brouillet, Fabien ; Laurencin, Danielle ; Grossin, David ; Drouet, Christophe ; Estournes, Claude ; Chevallier, Geoffroy ; Rey, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-5c05bb0a8de9bd62257bf9efa6e848f7e4631c805654cadb4989f97bfe0620073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Apatite</topic><topic>Apatites - chemical synthesis</topic><topic>Apatites - chemistry</topic><topic>Bioceramics</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetics</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Ceramics - chemical synthesis</topic><topic>Ceramics - chemistry</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Glass</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Mechanical properties</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - ultrastructure</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Natural Materials</topic><topic>Plasma Gases</topic><topic>Plasma sintering</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Powder Diffraction</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Spark plasma sintering</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brouillet, Fabien</creatorcontrib><creatorcontrib>Laurencin, Danielle</creatorcontrib><creatorcontrib>Grossin, David</creatorcontrib><creatorcontrib>Drouet, Christophe</creatorcontrib><creatorcontrib>Estournes, Claude</creatorcontrib><creatorcontrib>Chevallier, Geoffroy</creatorcontrib><creatorcontrib>Rey, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brouillet, Fabien</au><au>Laurencin, Danielle</au><au>Grossin, David</au><au>Drouet, Christophe</au><au>Estournes, Claude</au><au>Chevallier, Geoffroy</au><au>Rey, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>26</volume><issue>8</issue><spage>223</spage><epage>11</epage><pages>223-11</pages><artnum>223</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1–20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26271216</pmid><doi>10.1007/s10856-015-5553-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8471-8719</orcidid><orcidid>https://orcid.org/0000-0002-7445-0528</orcidid><orcidid>https://orcid.org/0000-0002-4320-2919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4530 |
ispartof | Journal of materials science. Materials in medicine, 2015-08, Vol.26 (8), p.223-11, Article 223 |
issn | 0957-4530 1573-4838 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01186448v1 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Apatite Apatites - chemical synthesis Apatites - chemistry Bioceramics Biomaterials Biomaterials Synthesis and Characterization Biomechanical Phenomena Biomedical Engineering and Bioengineering Biomedical materials Biomimetic Materials - chemical synthesis Biomimetic Materials - chemistry Biomimetics Bone Substitutes - chemical synthesis Bone Substitutes - chemistry Cellulose Ceramics Ceramics - chemical synthesis Ceramics - chemistry Chemical Sciences Chemistry and Materials Science Composite materials Composites Glass Humans Magnetic Resonance Spectroscopy Material chemistry Materials Science Materials Testing Mechanical properties Microscopy, Electron, Scanning Nanocomposites - chemistry Nanocomposites - ultrastructure Nanocrystals Nanoparticles - chemistry Nanoparticles - ultrastructure Natural Materials Plasma Gases Plasma sintering Polymer matrix composites Polymer Sciences Powder Diffraction Regenerative Medicine/Tissue Engineering Spark plasma sintering Spectroscopy, Fourier Transform Infrared Surface Properties Surfaces and Interfaces Thin Films |
title | Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20apatite-based%20composite%20materials%20obtained%20by%20spark%20plasma%20sintering%20(SPS):%20physicochemical%20and%20mechanical%20characterizations&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Brouillet,%20Fabien&rft.date=2015-08-01&rft.volume=26&rft.issue=8&rft.spage=223&rft.epage=11&rft.pages=223-11&rft.artnum=223&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-015-5553-9&rft_dat=%3Cproquest_hal_p%3E1808088695%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714192134&rft_id=info:pmid/26271216&rfr_iscdi=true |