An algorithm which generates linear extensions for a generalized Young diagram with uniform probability

The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nakada, Kento, Okamura, Shuji
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue Proceedings
container_start_page 933
container_title
container_volume DMTCS Proceedings vol. AN,...
creator Nakada, Kento
Okamura, Shuji
description The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.
doi_str_mv 10.46298/dmtcs.2843
format Conference Proceeding
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01186271v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01186271v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1121-f92ea9a61ab6b4d8d550792d6104e7a21a3edb3ac7b448724fee24eed1e1663</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQQBdRsFZP_oG9iqTubDab5FiKWqHgQS-ewiQ7SVbyUXZTtf76ph-IpxmGN-_wGLsFMVNapsmDaYfCz2SiwjM2gVBHQSIicf5vv2RX3n8KATJV8YRV845jU_XODnXLv2tb1LyijhwO5HljO0LH6Wegztu-87zsHccT0dhfMvyj33QVNxYrh6Nh9PBNZ0eu5WvX55jbxg7ba3ZRYuPp5jSn7O3p8X2xDFavzy-L-SooACQEZSoJU9SAuc6VSUwUiTiVRoNQFKMEDMnkIRZxrlQSS1USSUVkgEDrcMrujtYam2ztbItum_Vos-V8le1vAiDRMoYvGNn7I1u43ntH5d8DiOxQMzvUzPY1wx1M-2qN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</title><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ: Directory of Open Access Journals</source><creator>Nakada, Kento ; Okamura, Shuji</creator><creatorcontrib>Nakada, Kento ; Okamura, Shuji</creatorcontrib><description>The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.</description><identifier>ISSN: 1365-8050</identifier><identifier>ISSN: 1462-7264</identifier><identifier>EISSN: 1365-8050</identifier><identifier>DOI: 10.46298/dmtcs.2843</identifier><language>eng</language><publisher>DMTCS</publisher><subject>Combinatorics ; Computer Science ; Discrete Mathematics ; Mathematics</subject><ispartof>Discrete mathematics and theoretical computer science, 2010, Vol.DMTCS Proceedings vol. AN,... (Proceedings), p.933-940</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1121-f92ea9a61ab6b4d8d550792d6104e7a21a3edb3ac7b448724fee24eed1e1663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,864,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01186271$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakada, Kento</creatorcontrib><creatorcontrib>Okamura, Shuji</creatorcontrib><title>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</title><title>Discrete mathematics and theoretical computer science</title><description>The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Mathematics</subject><issn>1365-8050</issn><issn>1462-7264</issn><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AQQBdRsFZP_oG9iqTubDab5FiKWqHgQS-ewiQ7SVbyUXZTtf76ph-IpxmGN-_wGLsFMVNapsmDaYfCz2SiwjM2gVBHQSIicf5vv2RX3n8KATJV8YRV845jU_XODnXLv2tb1LyijhwO5HljO0LH6Wegztu-87zsHccT0dhfMvyj33QVNxYrh6Nh9PBNZ0eu5WvX55jbxg7ba3ZRYuPp5jSn7O3p8X2xDFavzy-L-SooACQEZSoJU9SAuc6VSUwUiTiVRoNQFKMEDMnkIRZxrlQSS1USSUVkgEDrcMrujtYam2ztbItum_Vos-V8le1vAiDRMoYvGNn7I1u43ntH5d8DiOxQMzvUzPY1wx1M-2qN</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Nakada, Kento</creator><creator>Okamura, Shuji</creator><general>DMTCS</general><general>Discrete Mathematics and Theoretical Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100101</creationdate><title>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</title><author>Nakada, Kento ; Okamura, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1121-f92ea9a61ab6b4d8d550792d6104e7a21a3edb3ac7b448724fee24eed1e1663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakada, Kento</creatorcontrib><creatorcontrib>Okamura, Shuji</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakada, Kento</au><au>Okamura, Shuji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</atitle><btitle>Discrete mathematics and theoretical computer science</btitle><date>2010-01-01</date><risdate>2010</risdate><volume>DMTCS Proceedings vol. AN,...</volume><issue>Proceedings</issue><spage>933</spage><epage>940</epage><pages>933-940</pages><issn>1365-8050</issn><issn>1462-7264</issn><eissn>1365-8050</eissn><abstract>The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.</abstract><pub>DMTCS</pub><doi>10.46298/dmtcs.2843</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-8050
ispartof Discrete mathematics and theoretical computer science, 2010, Vol.DMTCS Proceedings vol. AN,... (Proceedings), p.933-940
issn 1365-8050
1462-7264
1365-8050
language eng
recordid cdi_hal_primary_oai_HAL_hal_01186271v1
source Free E-Journal (出版社公開部分のみ); DOAJ: Directory of Open Access Journals
subjects Combinatorics
Computer Science
Discrete Mathematics
Mathematics
title An algorithm which generates linear extensions for a generalized Young diagram with uniform probability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20algorithm%20which%20generates%20linear%20extensions%20for%20a%20generalized%20Young%20diagram%20with%20uniform%20probability&rft.btitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Nakada,%20Kento&rft.date=2010-01-01&rft.volume=DMTCS%20Proceedings%20vol.%20AN,...&rft.issue=Proceedings&rft.spage=933&rft.epage=940&rft.pages=933-940&rft.issn=1365-8050&rft.eissn=1365-8050&rft_id=info:doi/10.46298/dmtcs.2843&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01186271v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true