An algorithm which generates linear extensions for a generalized Young diagram with uniform probability
The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 940 |
---|---|
container_issue | Proceedings |
container_start_page | 933 |
container_title | |
container_volume | DMTCS Proceedings vol. AN,... |
creator | Nakada, Kento Okamura, Shuji |
description | The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par
Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné. |
doi_str_mv | 10.46298/dmtcs.2843 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01186271v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01186271v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1121-f92ea9a61ab6b4d8d550792d6104e7a21a3edb3ac7b448724fee24eed1e1663</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQQBdRsFZP_oG9iqTubDab5FiKWqHgQS-ewiQ7SVbyUXZTtf76ph-IpxmGN-_wGLsFMVNapsmDaYfCz2SiwjM2gVBHQSIicf5vv2RX3n8KATJV8YRV845jU_XODnXLv2tb1LyijhwO5HljO0LH6Wegztu-87zsHccT0dhfMvyj33QVNxYrh6Nh9PBNZ0eu5WvX55jbxg7ba3ZRYuPp5jSn7O3p8X2xDFavzy-L-SooACQEZSoJU9SAuc6VSUwUiTiVRoNQFKMEDMnkIRZxrlQSS1USSUVkgEDrcMrujtYam2ztbItum_Vos-V8le1vAiDRMoYvGNn7I1u43ntH5d8DiOxQMzvUzPY1wx1M-2qN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</title><source>Free E-Journal (出版社公開部分のみ)</source><source>DOAJ: Directory of Open Access Journals</source><creator>Nakada, Kento ; Okamura, Shuji</creator><creatorcontrib>Nakada, Kento ; Okamura, Shuji</creatorcontrib><description>The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par
Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.</description><identifier>ISSN: 1365-8050</identifier><identifier>ISSN: 1462-7264</identifier><identifier>EISSN: 1365-8050</identifier><identifier>DOI: 10.46298/dmtcs.2843</identifier><language>eng</language><publisher>DMTCS</publisher><subject>Combinatorics ; Computer Science ; Discrete Mathematics ; Mathematics</subject><ispartof>Discrete mathematics and theoretical computer science, 2010, Vol.DMTCS Proceedings vol. AN,... (Proceedings), p.933-940</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1121-f92ea9a61ab6b4d8d550792d6104e7a21a3edb3ac7b448724fee24eed1e1663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,864,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01186271$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakada, Kento</creatorcontrib><creatorcontrib>Okamura, Shuji</creatorcontrib><title>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</title><title>Discrete mathematics and theoretical computer science</title><description>The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par
Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Mathematics</subject><issn>1365-8050</issn><issn>1462-7264</issn><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AQQBdRsFZP_oG9iqTubDab5FiKWqHgQS-ewiQ7SVbyUXZTtf76ph-IpxmGN-_wGLsFMVNapsmDaYfCz2SiwjM2gVBHQSIicf5vv2RX3n8KATJV8YRV845jU_XODnXLv2tb1LyijhwO5HljO0LH6Wegztu-87zsHccT0dhfMvyj33QVNxYrh6Nh9PBNZ0eu5WvX55jbxg7ba3ZRYuPp5jSn7O3p8X2xDFavzy-L-SooACQEZSoJU9SAuc6VSUwUiTiVRoNQFKMEDMnkIRZxrlQSS1USSUVkgEDrcMrujtYam2ztbItum_Vos-V8le1vAiDRMoYvGNn7I1u43ntH5d8DiOxQMzvUzPY1wx1M-2qN</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Nakada, Kento</creator><creator>Okamura, Shuji</creator><general>DMTCS</general><general>Discrete Mathematics and Theoretical Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100101</creationdate><title>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</title><author>Nakada, Kento ; Okamura, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1121-f92ea9a61ab6b4d8d550792d6104e7a21a3edb3ac7b448724fee24eed1e1663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakada, Kento</creatorcontrib><creatorcontrib>Okamura, Shuji</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakada, Kento</au><au>Okamura, Shuji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An algorithm which generates linear extensions for a generalized Young diagram with uniform probability</atitle><btitle>Discrete mathematics and theoretical computer science</btitle><date>2010-01-01</date><risdate>2010</risdate><volume>DMTCS Proceedings vol. AN,...</volume><issue>Proceedings</issue><spage>933</spage><epage>940</epage><pages>933-940</pages><issn>1365-8050</issn><issn>1462-7264</issn><eissn>1365-8050</eissn><abstract>The purpose of this paper is to present an algorithm which generates linear extensions for a generalized Young diagram, in the sense of D. Peterson and R. A. Proctor, with uniform probability. This gives a proof of a D. Peterson's hook formula for the number of reduced decompositions of a given minuscule elements. \par
Le but de ce papier est présenter un algorithme qui produit des extensions linéaires pour un Young diagramme généralisé dans le sens de D. Peterson et R. A. Proctor, avec probabilité constante. Cela donne une preuve de la hook formule d'un D. Peterson pour le nombre de décompositions réduites d'un éléments minuscules donné.</abstract><pub>DMTCS</pub><doi>10.46298/dmtcs.2843</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8050 |
ispartof | Discrete mathematics and theoretical computer science, 2010, Vol.DMTCS Proceedings vol. AN,... (Proceedings), p.933-940 |
issn | 1365-8050 1462-7264 1365-8050 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01186271v1 |
source | Free E-Journal (出版社公開部分のみ); DOAJ: Directory of Open Access Journals |
subjects | Combinatorics Computer Science Discrete Mathematics Mathematics |
title | An algorithm which generates linear extensions for a generalized Young diagram with uniform probability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20algorithm%20which%20generates%20linear%20extensions%20for%20a%20generalized%20Young%20diagram%20with%20uniform%20probability&rft.btitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Nakada,%20Kento&rft.date=2010-01-01&rft.volume=DMTCS%20Proceedings%20vol.%20AN,...&rft.issue=Proceedings&rft.spage=933&rft.epage=940&rft.pages=933-940&rft.issn=1365-8050&rft.eissn=1365-8050&rft_id=info:doi/10.46298/dmtcs.2843&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01186271v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |