Online maximum k-coverage

We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2012-09, Vol.160 (13-14), p.1901-1913
Hauptverfasser: Ausiello, G., Boria, N., Giannakos, A., Lucarelli, G., Paschos, V.Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1913
container_issue 13-14
container_start_page 1901
container_title Discrete Applied Mathematics
container_volume 160
creator Ausiello, G.
Boria, N.
Giannakos, A.
Lucarelli, G.
Paschos, V.Th
description We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.
doi_str_mv 10.1016/j.dam.2012.04.005
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01185270v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X12001643</els_id><sourcerecordid>S0166218X12001643</sourcerecordid><originalsourceid>FETCH-LOGICAL-e241t-8901b427c59d0d53fbda58c3638d2b848018b8ba04a2d82e036d27b3bfc51af03</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRMFZ_QHfduph470wmmeKqFLVCoBsFd5d5RafmIUkN-u9NqKsDh4_D4WNsiZAiYH53SL1pUgEoUshSAHXGEtSF4HlR4DlLJibnAvXbJbsahgPARKJO2HLf1rENq8b8xOa7WX1y142hN-_hml1Uph7CzX8u2Ovjw8t2x8v90_N2U_IgMjxyvQa0mSicWnvwSlbWG6WdzKX2wupMA2qrrYHMCK9FAJl7UVhpK6fQVCAX7Pa0-2Fq-upjY_pf6kyk3aakuQNErUQBI07s_YkN06Exhp4GF0Prgo99cEfyXSQEmo3QgSYjNBshyGgyIv8AWzpS-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Online maximum k-coverage</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ausiello, G. ; Boria, N. ; Giannakos, A. ; Lucarelli, G. ; Paschos, V.Th</creator><creatorcontrib>Ausiello, G. ; Boria, N. ; Giannakos, A. ; Lucarelli, G. ; Paschos, V.Th</creatorcontrib><description>We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2012.04.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Competitive ratio ; Computer Science ; Graphs ; Maximum [formula omitted]-coverage ; Negative results</subject><ispartof>Discrete Applied Mathematics, 2012-09, Vol.160 (13-14), p.1901-1913</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7368-355X ; 0000-0002-0548-4257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2012.04.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01185270$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ausiello, G.</creatorcontrib><creatorcontrib>Boria, N.</creatorcontrib><creatorcontrib>Giannakos, A.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><title>Online maximum k-coverage</title><title>Discrete Applied Mathematics</title><description>We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.</description><subject>Competitive ratio</subject><subject>Computer Science</subject><subject>Graphs</subject><subject>Maximum [formula omitted]-coverage</subject><subject>Negative results</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkEtLw0AUhQdRMFZ_QHfduph470wmmeKqFLVCoBsFd5d5RafmIUkN-u9NqKsDh4_D4WNsiZAiYH53SL1pUgEoUshSAHXGEtSF4HlR4DlLJibnAvXbJbsahgPARKJO2HLf1rENq8b8xOa7WX1y142hN-_hml1Uph7CzX8u2Ovjw8t2x8v90_N2U_IgMjxyvQa0mSicWnvwSlbWG6WdzKX2wupMA2qrrYHMCK9FAJl7UVhpK6fQVCAX7Pa0-2Fq-upjY_pf6kyk3aakuQNErUQBI07s_YkN06Exhp4GF0Prgo99cEfyXSQEmo3QgSYjNBshyGgyIv8AWzpS-g</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Ausiello, G.</creator><creator>Boria, N.</creator><creator>Giannakos, A.</creator><creator>Lucarelli, G.</creator><creator>Paschos, V.Th</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7368-355X</orcidid><orcidid>https://orcid.org/0000-0002-0548-4257</orcidid></search><sort><creationdate>201209</creationdate><title>Online maximum k-coverage</title><author>Ausiello, G. ; Boria, N. ; Giannakos, A. ; Lucarelli, G. ; Paschos, V.Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e241t-8901b427c59d0d53fbda58c3638d2b848018b8ba04a2d82e036d27b3bfc51af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Competitive ratio</topic><topic>Computer Science</topic><topic>Graphs</topic><topic>Maximum [formula omitted]-coverage</topic><topic>Negative results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ausiello, G.</creatorcontrib><creatorcontrib>Boria, N.</creatorcontrib><creatorcontrib>Giannakos, A.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ausiello, G.</au><au>Boria, N.</au><au>Giannakos, A.</au><au>Lucarelli, G.</au><au>Paschos, V.Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online maximum k-coverage</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2012-09</date><risdate>2012</risdate><volume>160</volume><issue>13-14</issue><spage>1901</spage><epage>1913</epage><pages>1901-1913</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2012.04.005</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7368-355X</orcidid><orcidid>https://orcid.org/0000-0002-0548-4257</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2012-09, Vol.160 (13-14), p.1901-1913
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_01185270v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Competitive ratio
Computer Science
Graphs
Maximum [formula omitted]-coverage
Negative results
title Online maximum k-coverage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20maximum%20k-coverage&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Ausiello,%20G.&rft.date=2012-09&rft.volume=160&rft.issue=13-14&rft.spage=1901&rft.epage=1913&rft.pages=1901-1913&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2012.04.005&rft_dat=%3Celsevier_hal_p%3ES0166218X12001643%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X12001643&rfr_iscdi=true