Online maximum k-coverage
We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we wi...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2012-09, Vol.160 (13-14), p.1901-1913 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1913 |
---|---|
container_issue | 13-14 |
container_start_page | 1901 |
container_title | Discrete Applied Mathematics |
container_volume | 160 |
creator | Ausiello, G. Boria, N. Giannakos, A. Lucarelli, G. Paschos, V.Th |
description | We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k. |
doi_str_mv | 10.1016/j.dam.2012.04.005 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01185270v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X12001643</els_id><sourcerecordid>S0166218X12001643</sourcerecordid><originalsourceid>FETCH-LOGICAL-e241t-8901b427c59d0d53fbda58c3638d2b848018b8ba04a2d82e036d27b3bfc51af03</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRMFZ_QHfduph470wmmeKqFLVCoBsFd5d5RafmIUkN-u9NqKsDh4_D4WNsiZAiYH53SL1pUgEoUshSAHXGEtSF4HlR4DlLJibnAvXbJbsahgPARKJO2HLf1rENq8b8xOa7WX1y142hN-_hml1Uph7CzX8u2Ovjw8t2x8v90_N2U_IgMjxyvQa0mSicWnvwSlbWG6WdzKX2wupMA2qrrYHMCK9FAJl7UVhpK6fQVCAX7Pa0-2Fq-upjY_pf6kyk3aakuQNErUQBI07s_YkN06Exhp4GF0Prgo99cEfyXSQEmo3QgSYjNBshyGgyIv8AWzpS-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Online maximum k-coverage</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ausiello, G. ; Boria, N. ; Giannakos, A. ; Lucarelli, G. ; Paschos, V.Th</creator><creatorcontrib>Ausiello, G. ; Boria, N. ; Giannakos, A. ; Lucarelli, G. ; Paschos, V.Th</creatorcontrib><description>We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2012.04.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Competitive ratio ; Computer Science ; Graphs ; Maximum [formula omitted]-coverage ; Negative results</subject><ispartof>Discrete Applied Mathematics, 2012-09, Vol.160 (13-14), p.1901-1913</ispartof><rights>2012 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7368-355X ; 0000-0002-0548-4257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2012.04.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01185270$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ausiello, G.</creatorcontrib><creatorcontrib>Boria, N.</creatorcontrib><creatorcontrib>Giannakos, A.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><title>Online maximum k-coverage</title><title>Discrete Applied Mathematics</title><description>We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.</description><subject>Competitive ratio</subject><subject>Computer Science</subject><subject>Graphs</subject><subject>Maximum [formula omitted]-coverage</subject><subject>Negative results</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkEtLw0AUhQdRMFZ_QHfduph470wmmeKqFLVCoBsFd5d5RafmIUkN-u9NqKsDh4_D4WNsiZAiYH53SL1pUgEoUshSAHXGEtSF4HlR4DlLJibnAvXbJbsahgPARKJO2HLf1rENq8b8xOa7WX1y142hN-_hml1Uph7CzX8u2Ovjw8t2x8v90_N2U_IgMjxyvQa0mSicWnvwSlbWG6WdzKX2wupMA2qrrYHMCK9FAJl7UVhpK6fQVCAX7Pa0-2Fq-upjY_pf6kyk3aakuQNErUQBI07s_YkN06Exhp4GF0Prgo99cEfyXSQEmo3QgSYjNBshyGgyIv8AWzpS-g</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Ausiello, G.</creator><creator>Boria, N.</creator><creator>Giannakos, A.</creator><creator>Lucarelli, G.</creator><creator>Paschos, V.Th</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7368-355X</orcidid><orcidid>https://orcid.org/0000-0002-0548-4257</orcidid></search><sort><creationdate>201209</creationdate><title>Online maximum k-coverage</title><author>Ausiello, G. ; Boria, N. ; Giannakos, A. ; Lucarelli, G. ; Paschos, V.Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e241t-8901b427c59d0d53fbda58c3638d2b848018b8ba04a2d82e036d27b3bfc51af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Competitive ratio</topic><topic>Computer Science</topic><topic>Graphs</topic><topic>Maximum [formula omitted]-coverage</topic><topic>Negative results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ausiello, G.</creatorcontrib><creatorcontrib>Boria, N.</creatorcontrib><creatorcontrib>Giannakos, A.</creatorcontrib><creatorcontrib>Lucarelli, G.</creatorcontrib><creatorcontrib>Paschos, V.Th</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ausiello, G.</au><au>Boria, N.</au><au>Giannakos, A.</au><au>Lucarelli, G.</au><au>Paschos, V.Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online maximum k-coverage</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2012-09</date><risdate>2012</risdate><volume>160</volume><issue>13-14</issue><spage>1901</spage><epage>1913</epage><pages>1901-1913</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>We study an online model for the maximum k-vertex-coverage problem, in which, given a graph G=(V,E) and an integer k, we seek a subset A⊆V such that |A|=k and the number of edges covered by A is maximized. In our model, at each step i, a new vertex vi is released, and we have to decide whether we will keep it or discard it. At any time of the process, only k vertices can be kept in memory; if at some point the current solution already contains k vertices, any inclusion of a new vertex in the solution must entail the definite deletion of another vertex of the current solution (a vertex not kept when released is definitely deleted). We propose algorithms for several natural classes of graphs (mainly regular and bipartite), improving on an easy 12-competitive ratio. We next settle a set version of the problem, called the maximum k-(set)-coverage problem. For this problem, we present an algorithm that improves upon former results for the same model for small and moderate values of k.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2012.04.005</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7368-355X</orcidid><orcidid>https://orcid.org/0000-0002-0548-4257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2012-09, Vol.160 (13-14), p.1901-1913 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01185270v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Competitive ratio Computer Science Graphs Maximum [formula omitted]-coverage Negative results |
title | Online maximum k-coverage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20maximum%20k-coverage&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Ausiello,%20G.&rft.date=2012-09&rft.volume=160&rft.issue=13-14&rft.spage=1901&rft.epage=1913&rft.pages=1901-1913&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2012.04.005&rft_dat=%3Celsevier_hal_p%3ES0166218X12001643%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X12001643&rfr_iscdi=true |