Directional solidification of inclined structures in thin samples
We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at vari...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2014-08, Vol.74 (74), p.255-267 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 74 |
container_start_page | 255 |
container_title | Acta materialia |
container_volume | 74 |
creator | Ghmadh, Jihene Debierre, Jean-Marc Deschamps, Julien Georgelin, Marc Guérin, Rahma Pocheau, Alain |
description | We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model. |
doi_str_mv | 10.1016/j.actamat.2014.04.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01181275v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414002742</els_id><sourcerecordid>1642240719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKc_QeiNoBedSZo03ZWM-TFh4I1eh9PThGWk7Uy6gf_e1I7dCodzwst7PvIkyS0lM0po8bidAfbQQD9jhPIZicHys2RCS5lnjIv8PL5zMc8KLvhlchXClhDKJCeTZPFsvcbedi24NHTO1tZYhEFIO5PaFp1tdZ2G3u-x33sdopb2m5gCNDunw3VyYcAFfXOs0-Tr9eVzucrWH2_vy8U6Qy5Zn2HJKyPjRULUdcEl8hygklIUlDBOeQkVK02h9ZygqYCaQtaYM4MFI7LSPJ8mD-PcDTi187YB_6M6sGq1WKtBI5SW8VfiQKP3fvTufPe916FXjQ2onYNWd_ugaMEZ40TSebSK0Yq-C8Frc5pNiRrwqq064lUDXkVisDz23R1XQEBwxkOLNpyaWSkGwsPZT6NPRzYHq70KaHWLuv4Dr-rO_rPpFy_mkks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642240719</pqid></control><display><type>article</type><title>Directional solidification of inclined structures in thin samples</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ghmadh, Jihene ; Debierre, Jean-Marc ; Deschamps, Julien ; Georgelin, Marc ; Guérin, Rahma ; Pocheau, Alain</creator><creatorcontrib>Ghmadh, Jihene ; Debierre, Jean-Marc ; Deschamps, Julien ; Georgelin, Marc ; Guérin, Rahma ; Pocheau, Alain</creatorcontrib><description>We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.04.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Crystallographic misorientations ; Crystals ; Dendritic solidification ; Directional solidification ; Exact sciences and technology ; Fluid mechanics ; Mathematical models ; Mechanics ; Metals. Metallurgy ; Microstructure ; Phase-field modeling ; Physics ; Solidification ; Solidification microstructures ; Three dimensional ; Three dimensional models</subject><ispartof>Acta materialia, 2014-08, Vol.74 (74), p.255-267</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</citedby><cites>FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</cites><orcidid>0000-0002-6119-2419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2014.04.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28512744$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01181275$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghmadh, Jihene</creatorcontrib><creatorcontrib>Debierre, Jean-Marc</creatorcontrib><creatorcontrib>Deschamps, Julien</creatorcontrib><creatorcontrib>Georgelin, Marc</creatorcontrib><creatorcontrib>Guérin, Rahma</creatorcontrib><creatorcontrib>Pocheau, Alain</creatorcontrib><title>Directional solidification of inclined structures in thin samples</title><title>Acta materialia</title><description>We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Crystallographic misorientations</subject><subject>Crystals</subject><subject>Dendritic solidification</subject><subject>Directional solidification</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Phase-field modeling</subject><subject>Physics</subject><subject>Solidification</subject><subject>Solidification microstructures</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhosoOKc_QeiNoBedSZo03ZWM-TFh4I1eh9PThGWk7Uy6gf_e1I7dCodzwst7PvIkyS0lM0po8bidAfbQQD9jhPIZicHys2RCS5lnjIv8PL5zMc8KLvhlchXClhDKJCeTZPFsvcbedi24NHTO1tZYhEFIO5PaFp1tdZ2G3u-x33sdopb2m5gCNDunw3VyYcAFfXOs0-Tr9eVzucrWH2_vy8U6Qy5Zn2HJKyPjRULUdcEl8hygklIUlDBOeQkVK02h9ZygqYCaQtaYM4MFI7LSPJ8mD-PcDTi187YB_6M6sGq1WKtBI5SW8VfiQKP3fvTufPe916FXjQ2onYNWd_ugaMEZ40TSebSK0Yq-C8Frc5pNiRrwqq064lUDXkVisDz23R1XQEBwxkOLNpyaWSkGwsPZT6NPRzYHq70KaHWLuv4Dr-rO_rPpFy_mkks</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ghmadh, Jihene</creator><creator>Debierre, Jean-Marc</creator><creator>Deschamps, Julien</creator><creator>Georgelin, Marc</creator><creator>Guérin, Rahma</creator><creator>Pocheau, Alain</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6119-2419</orcidid></search><sort><creationdate>20140801</creationdate><title>Directional solidification of inclined structures in thin samples</title><author>Ghmadh, Jihene ; Debierre, Jean-Marc ; Deschamps, Julien ; Georgelin, Marc ; Guérin, Rahma ; Pocheau, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Crystallographic misorientations</topic><topic>Crystals</topic><topic>Dendritic solidification</topic><topic>Directional solidification</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Phase-field modeling</topic><topic>Physics</topic><topic>Solidification</topic><topic>Solidification microstructures</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghmadh, Jihene</creatorcontrib><creatorcontrib>Debierre, Jean-Marc</creatorcontrib><creatorcontrib>Deschamps, Julien</creatorcontrib><creatorcontrib>Georgelin, Marc</creatorcontrib><creatorcontrib>Guérin, Rahma</creatorcontrib><creatorcontrib>Pocheau, Alain</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghmadh, Jihene</au><au>Debierre, Jean-Marc</au><au>Deschamps, Julien</au><au>Georgelin, Marc</au><au>Guérin, Rahma</au><au>Pocheau, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional solidification of inclined structures in thin samples</atitle><jtitle>Acta materialia</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>74</volume><issue>74</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.04.023</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6119-2419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2014-08, Vol.74 (74), p.255-267 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01181275v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Computer simulation Crystallographic misorientations Crystals Dendritic solidification Directional solidification Exact sciences and technology Fluid mechanics Mathematical models Mechanics Metals. Metallurgy Microstructure Phase-field modeling Physics Solidification Solidification microstructures Three dimensional Three dimensional models |
title | Directional solidification of inclined structures in thin samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20solidification%20of%20inclined%20structures%20in%20thin%20samples&rft.jtitle=Acta%20materialia&rft.au=Ghmadh,%20Jihene&rft.date=2014-08-01&rft.volume=74&rft.issue=74&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.04.023&rft_dat=%3Cproquest_hal_p%3E1642240719%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642240719&rft_id=info:pmid/&rft_els_id=S1359645414002742&rfr_iscdi=true |