Directional solidification of inclined structures in thin samples

We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-08, Vol.74 (74), p.255-267
Hauptverfasser: Ghmadh, Jihene, Debierre, Jean-Marc, Deschamps, Julien, Georgelin, Marc, Guérin, Rahma, Pocheau, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 74
container_start_page 255
container_title Acta materialia
container_volume 74
creator Ghmadh, Jihene
Debierre, Jean-Marc
Deschamps, Julien
Georgelin, Marc
Guérin, Rahma
Pocheau, Alain
description We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.
doi_str_mv 10.1016/j.actamat.2014.04.023
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01181275v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414002742</els_id><sourcerecordid>1642240719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKc_QeiNoBedSZo03ZWM-TFh4I1eh9PThGWk7Uy6gf_e1I7dCodzwst7PvIkyS0lM0po8bidAfbQQD9jhPIZicHys2RCS5lnjIv8PL5zMc8KLvhlchXClhDKJCeTZPFsvcbedi24NHTO1tZYhEFIO5PaFp1tdZ2G3u-x33sdopb2m5gCNDunw3VyYcAFfXOs0-Tr9eVzucrWH2_vy8U6Qy5Zn2HJKyPjRULUdcEl8hygklIUlDBOeQkVK02h9ZygqYCaQtaYM4MFI7LSPJ8mD-PcDTi187YB_6M6sGq1WKtBI5SW8VfiQKP3fvTufPe916FXjQ2onYNWd_ugaMEZ40TSebSK0Yq-C8Frc5pNiRrwqq064lUDXkVisDz23R1XQEBwxkOLNpyaWSkGwsPZT6NPRzYHq70KaHWLuv4Dr-rO_rPpFy_mkks</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642240719</pqid></control><display><type>article</type><title>Directional solidification of inclined structures in thin samples</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ghmadh, Jihene ; Debierre, Jean-Marc ; Deschamps, Julien ; Georgelin, Marc ; Guérin, Rahma ; Pocheau, Alain</creator><creatorcontrib>Ghmadh, Jihene ; Debierre, Jean-Marc ; Deschamps, Julien ; Georgelin, Marc ; Guérin, Rahma ; Pocheau, Alain</creatorcontrib><description>We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.04.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Crystallographic misorientations ; Crystals ; Dendritic solidification ; Directional solidification ; Exact sciences and technology ; Fluid mechanics ; Mathematical models ; Mechanics ; Metals. Metallurgy ; Microstructure ; Phase-field modeling ; Physics ; Solidification ; Solidification microstructures ; Three dimensional ; Three dimensional models</subject><ispartof>Acta materialia, 2014-08, Vol.74 (74), p.255-267</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</citedby><cites>FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</cites><orcidid>0000-0002-6119-2419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2014.04.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28512744$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01181275$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghmadh, Jihene</creatorcontrib><creatorcontrib>Debierre, Jean-Marc</creatorcontrib><creatorcontrib>Deschamps, Julien</creatorcontrib><creatorcontrib>Georgelin, Marc</creatorcontrib><creatorcontrib>Guérin, Rahma</creatorcontrib><creatorcontrib>Pocheau, Alain</creatorcontrib><title>Directional solidification of inclined structures in thin samples</title><title>Acta materialia</title><description>We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Crystallographic misorientations</subject><subject>Crystals</subject><subject>Dendritic solidification</subject><subject>Directional solidification</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Phase-field modeling</subject><subject>Physics</subject><subject>Solidification</subject><subject>Solidification microstructures</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhosoOKc_QeiNoBedSZo03ZWM-TFh4I1eh9PThGWk7Uy6gf_e1I7dCodzwst7PvIkyS0lM0po8bidAfbQQD9jhPIZicHys2RCS5lnjIv8PL5zMc8KLvhlchXClhDKJCeTZPFsvcbedi24NHTO1tZYhEFIO5PaFp1tdZ2G3u-x33sdopb2m5gCNDunw3VyYcAFfXOs0-Tr9eVzucrWH2_vy8U6Qy5Zn2HJKyPjRULUdcEl8hygklIUlDBOeQkVK02h9ZygqYCaQtaYM4MFI7LSPJ8mD-PcDTi187YB_6M6sGq1WKtBI5SW8VfiQKP3fvTufPe916FXjQ2onYNWd_ugaMEZ40TSebSK0Yq-C8Frc5pNiRrwqq064lUDXkVisDz23R1XQEBwxkOLNpyaWSkGwsPZT6NPRzYHq70KaHWLuv4Dr-rO_rPpFy_mkks</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ghmadh, Jihene</creator><creator>Debierre, Jean-Marc</creator><creator>Deschamps, Julien</creator><creator>Georgelin, Marc</creator><creator>Guérin, Rahma</creator><creator>Pocheau, Alain</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6119-2419</orcidid></search><sort><creationdate>20140801</creationdate><title>Directional solidification of inclined structures in thin samples</title><author>Ghmadh, Jihene ; Debierre, Jean-Marc ; Deschamps, Julien ; Georgelin, Marc ; Guérin, Rahma ; Pocheau, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-c84bf787355dd647c43aab77561024148ab28f6ee90cfba1f67dc32fc6207be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Crystallographic misorientations</topic><topic>Crystals</topic><topic>Dendritic solidification</topic><topic>Directional solidification</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Phase-field modeling</topic><topic>Physics</topic><topic>Solidification</topic><topic>Solidification microstructures</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghmadh, Jihene</creatorcontrib><creatorcontrib>Debierre, Jean-Marc</creatorcontrib><creatorcontrib>Deschamps, Julien</creatorcontrib><creatorcontrib>Georgelin, Marc</creatorcontrib><creatorcontrib>Guérin, Rahma</creatorcontrib><creatorcontrib>Pocheau, Alain</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghmadh, Jihene</au><au>Debierre, Jean-Marc</au><au>Deschamps, Julien</au><au>Georgelin, Marc</au><au>Guérin, Rahma</au><au>Pocheau, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional solidification of inclined structures in thin samples</atitle><jtitle>Acta materialia</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>74</volume><issue>74</issue><spage>255</spage><epage>267</epage><pages>255-267</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>We address the directional solidification of inclined structures by combining numerical and experimental studies performed in situations capable of yielding a detailed relevant comparison between them. We especially seek to determine the growth directions and the stability of microstructures at various Péclet numbers when the crystal axes and the thermal gradient involve a misorientation. For this we perform experiments and simulations in the closest possible conditions referring to similar physical parameters and to a monocrystal growing in a thin sample by a single layer of homogeneously spaced microstructures. Implementing a 3D phase-field numerical code proves necessary to accurately model the solidification structures. A quite satisfactory agreement, both on qualitative and quantitative grounds, is found between experiments and 3D simulations, on both the growth directions of microstructures and the transition to the degenerate mode. This agreement provides a confirmation of the growth direction law evidenced experimentally and a fine validation of the 3D phase-field numerical model.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.04.023</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6119-2419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-08, Vol.74 (74), p.255-267
issn 1359-6454
1873-2453
language eng
recordid cdi_hal_primary_oai_HAL_hal_01181275v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Computer simulation
Crystallographic misorientations
Crystals
Dendritic solidification
Directional solidification
Exact sciences and technology
Fluid mechanics
Mathematical models
Mechanics
Metals. Metallurgy
Microstructure
Phase-field modeling
Physics
Solidification
Solidification microstructures
Three dimensional
Three dimensional models
title Directional solidification of inclined structures in thin samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20solidification%20of%20inclined%20structures%20in%20thin%20samples&rft.jtitle=Acta%20materialia&rft.au=Ghmadh,%20Jihene&rft.date=2014-08-01&rft.volume=74&rft.issue=74&rft.spage=255&rft.epage=267&rft.pages=255-267&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.04.023&rft_dat=%3Cproquest_hal_p%3E1642240719%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642240719&rft_id=info:pmid/&rft_els_id=S1359645414002742&rfr_iscdi=true