Multiple spine boutons are formed after long-lasting LTP in the awake rat
The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new syna...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2014-01, Vol.219 (1), p.407-414 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 1 |
container_start_page | 407 |
container_title | Brain Structure and Function |
container_volume | 219 |
creator | Medvedev, N. I. Dallérac, G. Popov, V. I. Rodriguez Arellano, J. J. Davies, H. A. Kraev, I. V. Doyère, V. Stewart, M. G. |
description | The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an
N
-methyl-
d
-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities. |
doi_str_mv | 10.1007/s00429-012-0488-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01181226v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490706444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</originalsourceid><addsrcrecordid>eNp1kU1PxCAQhonR6PrxA7wYEi96qM5QSstxs1HXZI0e9EzYFtZqt6zQavz3sqlujIknCDzzzMBLyDHCBQLklwGAM5kAsgR4USSwRUZYiDRhQuD2Zp-le2Q_hBeATBYod8keSxnjDIsRub3rm65eNYaGVd0aOnd959pAtTfUOr80FdW2M542rl0kjQ5d3S7o7PGB1i3tng3VH_rVUK-7Q7JjdRPM0fd6QJ6urx4n02R2f3M7Gc-SkuesS7REWVkhdJpnVVXyuWUytQZ5jpkuTak5VpxXlRZZLgsLIs2tgLmpchAgyiI9IOeD91k3auXrpfafyulaTccztT4DxAIZE-8Y2bOBXXn31pvQqWUdStM0ujWuDwq5hOjlnEf09A_64nrfxpdEKk-F5IythThQpXcheGM3EyCodSZqyCQOwdQ6EwWx5uTb3M_jf24qfkKIABuAEK_ahfG_Wv9r_QJbp5Q4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473694221</pqid></control><display><type>article</type><title>Multiple spine boutons are formed after long-lasting LTP in the awake rat</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Medvedev, N. I. ; Dallérac, G. ; Popov, V. I. ; Rodriguez Arellano, J. J. ; Davies, H. A. ; Kraev, I. V. ; Doyère, V. ; Stewart, M. G.</creator><creatorcontrib>Medvedev, N. I. ; Dallérac, G. ; Popov, V. I. ; Rodriguez Arellano, J. J. ; Davies, H. A. ; Kraev, I. V. ; Doyère, V. ; Stewart, M. G.</creatorcontrib><description>The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an
N
-methyl-
d
-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-012-0488-0</identifier><identifier>PMID: 23224218</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal cognition ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Biophysics ; Brain ; Cell Biology ; Cognitive Sciences ; Computer Simulation ; Dendritic Spines ; Dendritic Spines - physiology ; Dendritic Spines - ultrastructure ; Electric Stimulation ; Electrodes, Implanted ; Excitatory Amino Acid Antagonists ; Excitatory Amino Acid Antagonists - pharmacology ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Life Sciences ; Long-Term Potentiation ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Long-Term Synaptic Depression ; Long-Term Synaptic Depression - drug effects ; Long-Term Synaptic Depression - physiology ; Male ; Mental depression ; Nerve Net ; Nerve Net - physiology ; Nerve Net - ultrastructure ; Neurobiology ; Neurology ; Neurons and Cognition ; Neurosciences ; Piperazines ; Piperazines - pharmacology ; Psychology and behavior ; Rats ; Rats, Sprague-Dawley ; Rodents ; Short Communication ; Synapses ; Synapses - physiology ; Synapses - ultrastructure ; Time Factors ; Wakefulness</subject><ispartof>Brain Structure and Function, 2014-01, Vol.219 (1), p.407-414</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</citedby><cites>FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</cites><orcidid>0000-0002-3851-669X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-012-0488-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-012-0488-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23224218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01181226$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Medvedev, N. I.</creatorcontrib><creatorcontrib>Dallérac, G.</creatorcontrib><creatorcontrib>Popov, V. I.</creatorcontrib><creatorcontrib>Rodriguez Arellano, J. J.</creatorcontrib><creatorcontrib>Davies, H. A.</creatorcontrib><creatorcontrib>Kraev, I. V.</creatorcontrib><creatorcontrib>Doyère, V.</creatorcontrib><creatorcontrib>Stewart, M. G.</creatorcontrib><title>Multiple spine boutons are formed after long-lasting LTP in the awake rat</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an
N
-methyl-
d
-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Cell Biology</subject><subject>Cognitive Sciences</subject><subject>Computer Simulation</subject><subject>Dendritic Spines</subject><subject>Dendritic Spines - physiology</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Electric Stimulation</subject><subject>Electrodes, Implanted</subject><subject>Excitatory Amino Acid Antagonists</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Life Sciences</subject><subject>Long-Term Potentiation</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Long-Term Synaptic Depression</subject><subject>Long-Term Synaptic Depression - drug effects</subject><subject>Long-Term Synaptic Depression - physiology</subject><subject>Male</subject><subject>Mental depression</subject><subject>Nerve Net</subject><subject>Nerve Net - physiology</subject><subject>Nerve Net - ultrastructure</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Piperazines</subject><subject>Piperazines - pharmacology</subject><subject>Psychology and behavior</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Short Communication</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time Factors</subject><subject>Wakefulness</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1PxCAQhonR6PrxA7wYEi96qM5QSstxs1HXZI0e9EzYFtZqt6zQavz3sqlujIknCDzzzMBLyDHCBQLklwGAM5kAsgR4USSwRUZYiDRhQuD2Zp-le2Q_hBeATBYod8keSxnjDIsRub3rm65eNYaGVd0aOnd959pAtTfUOr80FdW2M542rl0kjQ5d3S7o7PGB1i3tng3VH_rVUK-7Q7JjdRPM0fd6QJ6urx4n02R2f3M7Gc-SkuesS7REWVkhdJpnVVXyuWUytQZ5jpkuTak5VpxXlRZZLgsLIs2tgLmpchAgyiI9IOeD91k3auXrpfafyulaTccztT4DxAIZE-8Y2bOBXXn31pvQqWUdStM0ujWuDwq5hOjlnEf09A_64nrfxpdEKk-F5IythThQpXcheGM3EyCodSZqyCQOwdQ6EwWx5uTb3M_jf24qfkKIABuAEK_ahfG_Wv9r_QJbp5Q4</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Medvedev, N. I.</creator><creator>Dallérac, G.</creator><creator>Popov, V. I.</creator><creator>Rodriguez Arellano, J. J.</creator><creator>Davies, H. A.</creator><creator>Kraev, I. V.</creator><creator>Doyère, V.</creator><creator>Stewart, M. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3851-669X</orcidid></search><sort><creationdate>20140101</creationdate><title>Multiple spine boutons are formed after long-lasting LTP in the awake rat</title><author>Medvedev, N. I. ; Dallérac, G. ; Popov, V. I. ; Rodriguez Arellano, J. J. ; Davies, H. A. ; Kraev, I. V. ; Doyère, V. ; Stewart, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Cell Biology</topic><topic>Cognitive Sciences</topic><topic>Computer Simulation</topic><topic>Dendritic Spines</topic><topic>Dendritic Spines - physiology</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Electric Stimulation</topic><topic>Electrodes, Implanted</topic><topic>Excitatory Amino Acid Antagonists</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Life Sciences</topic><topic>Long-Term Potentiation</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Long-Term Synaptic Depression</topic><topic>Long-Term Synaptic Depression - drug effects</topic><topic>Long-Term Synaptic Depression - physiology</topic><topic>Male</topic><topic>Mental depression</topic><topic>Nerve Net</topic><topic>Nerve Net - physiology</topic><topic>Nerve Net - ultrastructure</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Piperazines</topic><topic>Piperazines - pharmacology</topic><topic>Psychology and behavior</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Short Communication</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time Factors</topic><topic>Wakefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, N. I.</creatorcontrib><creatorcontrib>Dallérac, G.</creatorcontrib><creatorcontrib>Popov, V. I.</creatorcontrib><creatorcontrib>Rodriguez Arellano, J. J.</creatorcontrib><creatorcontrib>Davies, H. A.</creatorcontrib><creatorcontrib>Kraev, I. V.</creatorcontrib><creatorcontrib>Doyère, V.</creatorcontrib><creatorcontrib>Stewart, M. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, N. I.</au><au>Dallérac, G.</au><au>Popov, V. I.</au><au>Rodriguez Arellano, J. J.</au><au>Davies, H. A.</au><au>Kraev, I. V.</au><au>Doyère, V.</au><au>Stewart, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple spine boutons are formed after long-lasting LTP in the awake rat</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>219</volume><issue>1</issue><spage>407</spage><epage>414</epage><pages>407-414</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an
N
-methyl-
d
-aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23224218</pmid><doi>10.1007/s00429-012-0488-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3851-669X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-2653 |
ispartof | Brain Structure and Function, 2014-01, Vol.219 (1), p.407-414 |
issn | 1863-2653 1863-2661 0340-2061 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01181226v1 |
source | MEDLINE; SpringerLink Journals |
subjects | Animal cognition Animals Biomedical and Life Sciences Biomedicine Biophysics Brain Cell Biology Cognitive Sciences Computer Simulation Dendritic Spines Dendritic Spines - physiology Dendritic Spines - ultrastructure Electric Stimulation Electrodes, Implanted Excitatory Amino Acid Antagonists Excitatory Amino Acid Antagonists - pharmacology Hippocampus Hippocampus - cytology Hippocampus - physiology Life Sciences Long-Term Potentiation Long-Term Potentiation - drug effects Long-Term Potentiation - physiology Long-Term Synaptic Depression Long-Term Synaptic Depression - drug effects Long-Term Synaptic Depression - physiology Male Mental depression Nerve Net Nerve Net - physiology Nerve Net - ultrastructure Neurobiology Neurology Neurons and Cognition Neurosciences Piperazines Piperazines - pharmacology Psychology and behavior Rats Rats, Sprague-Dawley Rodents Short Communication Synapses Synapses - physiology Synapses - ultrastructure Time Factors Wakefulness |
title | Multiple spine boutons are formed after long-lasting LTP in the awake rat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20spine%20boutons%20are%20formed%20after%20long-lasting%20LTP%20in%20the%20awake%20rat&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Medvedev,%20N.%20I.&rft.date=2014-01-01&rft.volume=219&rft.issue=1&rft.spage=407&rft.epage=414&rft.pages=407-414&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-012-0488-0&rft_dat=%3Cproquest_hal_p%3E1490706444%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473694221&rft_id=info:pmid/23224218&rfr_iscdi=true |