Multiple spine boutons are formed after long-lasting LTP in the awake rat

The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new syna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2014-01, Vol.219 (1), p.407-414
Hauptverfasser: Medvedev, N. I., Dallérac, G., Popov, V. I., Rodriguez Arellano, J. J., Davies, H. A., Kraev, I. V., Doyère, V., Stewart, M. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 1
container_start_page 407
container_title Brain Structure and Function
container_volume 219
creator Medvedev, N. I.
Dallérac, G.
Popov, V. I.
Rodriguez Arellano, J. J.
Davies, H. A.
Kraev, I. V.
Doyère, V.
Stewart, M. G.
description The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N -methyl- d -aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.
doi_str_mv 10.1007/s00429-012-0488-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01181226v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490706444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</originalsourceid><addsrcrecordid>eNp1kU1PxCAQhonR6PrxA7wYEi96qM5QSstxs1HXZI0e9EzYFtZqt6zQavz3sqlujIknCDzzzMBLyDHCBQLklwGAM5kAsgR4USSwRUZYiDRhQuD2Zp-le2Q_hBeATBYod8keSxnjDIsRub3rm65eNYaGVd0aOnd959pAtTfUOr80FdW2M542rl0kjQ5d3S7o7PGB1i3tng3VH_rVUK-7Q7JjdRPM0fd6QJ6urx4n02R2f3M7Gc-SkuesS7REWVkhdJpnVVXyuWUytQZ5jpkuTak5VpxXlRZZLgsLIs2tgLmpchAgyiI9IOeD91k3auXrpfafyulaTccztT4DxAIZE-8Y2bOBXXn31pvQqWUdStM0ujWuDwq5hOjlnEf09A_64nrfxpdEKk-F5IythThQpXcheGM3EyCodSZqyCQOwdQ6EwWx5uTb3M_jf24qfkKIABuAEK_ahfG_Wv9r_QJbp5Q4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473694221</pqid></control><display><type>article</type><title>Multiple spine boutons are formed after long-lasting LTP in the awake rat</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Medvedev, N. I. ; Dallérac, G. ; Popov, V. I. ; Rodriguez Arellano, J. J. ; Davies, H. A. ; Kraev, I. V. ; Doyère, V. ; Stewart, M. G.</creator><creatorcontrib>Medvedev, N. I. ; Dallérac, G. ; Popov, V. I. ; Rodriguez Arellano, J. J. ; Davies, H. A. ; Kraev, I. V. ; Doyère, V. ; Stewart, M. G.</creatorcontrib><description>The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N -methyl- d -aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-012-0488-0</identifier><identifier>PMID: 23224218</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal cognition ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Biophysics ; Brain ; Cell Biology ; Cognitive Sciences ; Computer Simulation ; Dendritic Spines ; Dendritic Spines - physiology ; Dendritic Spines - ultrastructure ; Electric Stimulation ; Electrodes, Implanted ; Excitatory Amino Acid Antagonists ; Excitatory Amino Acid Antagonists - pharmacology ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Life Sciences ; Long-Term Potentiation ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Long-Term Synaptic Depression ; Long-Term Synaptic Depression - drug effects ; Long-Term Synaptic Depression - physiology ; Male ; Mental depression ; Nerve Net ; Nerve Net - physiology ; Nerve Net - ultrastructure ; Neurobiology ; Neurology ; Neurons and Cognition ; Neurosciences ; Piperazines ; Piperazines - pharmacology ; Psychology and behavior ; Rats ; Rats, Sprague-Dawley ; Rodents ; Short Communication ; Synapses ; Synapses - physiology ; Synapses - ultrastructure ; Time Factors ; Wakefulness</subject><ispartof>Brain Structure and Function, 2014-01, Vol.219 (1), p.407-414</ispartof><rights>Springer-Verlag Berlin Heidelberg 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</citedby><cites>FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</cites><orcidid>0000-0002-3851-669X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-012-0488-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-012-0488-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23224218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01181226$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Medvedev, N. I.</creatorcontrib><creatorcontrib>Dallérac, G.</creatorcontrib><creatorcontrib>Popov, V. I.</creatorcontrib><creatorcontrib>Rodriguez Arellano, J. J.</creatorcontrib><creatorcontrib>Davies, H. A.</creatorcontrib><creatorcontrib>Kraev, I. V.</creatorcontrib><creatorcontrib>Doyère, V.</creatorcontrib><creatorcontrib>Stewart, M. G.</creatorcontrib><title>Multiple spine boutons are formed after long-lasting LTP in the awake rat</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N -methyl- d -aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Cell Biology</subject><subject>Cognitive Sciences</subject><subject>Computer Simulation</subject><subject>Dendritic Spines</subject><subject>Dendritic Spines - physiology</subject><subject>Dendritic Spines - ultrastructure</subject><subject>Electric Stimulation</subject><subject>Electrodes, Implanted</subject><subject>Excitatory Amino Acid Antagonists</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Life Sciences</subject><subject>Long-Term Potentiation</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Long-Term Synaptic Depression</subject><subject>Long-Term Synaptic Depression - drug effects</subject><subject>Long-Term Synaptic Depression - physiology</subject><subject>Male</subject><subject>Mental depression</subject><subject>Nerve Net</subject><subject>Nerve Net - physiology</subject><subject>Nerve Net - ultrastructure</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Piperazines</subject><subject>Piperazines - pharmacology</subject><subject>Psychology and behavior</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Short Communication</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><subject>Time Factors</subject><subject>Wakefulness</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1PxCAQhonR6PrxA7wYEi96qM5QSstxs1HXZI0e9EzYFtZqt6zQavz3sqlujIknCDzzzMBLyDHCBQLklwGAM5kAsgR4USSwRUZYiDRhQuD2Zp-le2Q_hBeATBYod8keSxnjDIsRub3rm65eNYaGVd0aOnd959pAtTfUOr80FdW2M542rl0kjQ5d3S7o7PGB1i3tng3VH_rVUK-7Q7JjdRPM0fd6QJ6urx4n02R2f3M7Gc-SkuesS7REWVkhdJpnVVXyuWUytQZ5jpkuTak5VpxXlRZZLgsLIs2tgLmpchAgyiI9IOeD91k3auXrpfafyulaTccztT4DxAIZE-8Y2bOBXXn31pvQqWUdStM0ujWuDwq5hOjlnEf09A_64nrfxpdEKk-F5IythThQpXcheGM3EyCodSZqyCQOwdQ6EwWx5uTb3M_jf24qfkKIABuAEK_ahfG_Wv9r_QJbp5Q4</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Medvedev, N. I.</creator><creator>Dallérac, G.</creator><creator>Popov, V. I.</creator><creator>Rodriguez Arellano, J. J.</creator><creator>Davies, H. A.</creator><creator>Kraev, I. V.</creator><creator>Doyère, V.</creator><creator>Stewart, M. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3851-669X</orcidid></search><sort><creationdate>20140101</creationdate><title>Multiple spine boutons are formed after long-lasting LTP in the awake rat</title><author>Medvedev, N. I. ; Dallérac, G. ; Popov, V. I. ; Rodriguez Arellano, J. J. ; Davies, H. A. ; Kraev, I. V. ; Doyère, V. ; Stewart, M. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a919df66a375ddc4bf293fe14715aceca41d44dda65798f0637f60bed70606c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Cell Biology</topic><topic>Cognitive Sciences</topic><topic>Computer Simulation</topic><topic>Dendritic Spines</topic><topic>Dendritic Spines - physiology</topic><topic>Dendritic Spines - ultrastructure</topic><topic>Electric Stimulation</topic><topic>Electrodes, Implanted</topic><topic>Excitatory Amino Acid Antagonists</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Life Sciences</topic><topic>Long-Term Potentiation</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Long-Term Synaptic Depression</topic><topic>Long-Term Synaptic Depression - drug effects</topic><topic>Long-Term Synaptic Depression - physiology</topic><topic>Male</topic><topic>Mental depression</topic><topic>Nerve Net</topic><topic>Nerve Net - physiology</topic><topic>Nerve Net - ultrastructure</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Piperazines</topic><topic>Piperazines - pharmacology</topic><topic>Psychology and behavior</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Short Communication</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><topic>Time Factors</topic><topic>Wakefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, N. I.</creatorcontrib><creatorcontrib>Dallérac, G.</creatorcontrib><creatorcontrib>Popov, V. I.</creatorcontrib><creatorcontrib>Rodriguez Arellano, J. J.</creatorcontrib><creatorcontrib>Davies, H. A.</creatorcontrib><creatorcontrib>Kraev, I. V.</creatorcontrib><creatorcontrib>Doyère, V.</creatorcontrib><creatorcontrib>Stewart, M. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, N. I.</au><au>Dallérac, G.</au><au>Popov, V. I.</au><au>Rodriguez Arellano, J. J.</au><au>Davies, H. A.</au><au>Kraev, I. V.</au><au>Doyère, V.</au><au>Stewart, M. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple spine boutons are formed after long-lasting LTP in the awake rat</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>219</volume><issue>1</issue><spage>407</spage><epage>414</epage><pages>407-414</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>The formation of multiple spine boutons (MSBs) has been associated with cognitive abilities including hippocampal-dependent associative learning and memory. Data obtained from cultured hippocampal slices suggest that the long-term maintenance of synaptic plasticity requires the formation of new synaptic contacts on pre-existing synapses. This postulate however, has never been tested in the awake, freely moving animals. In the current study, we induced long-term potentiation (LTP) in the dentate gyrus (DG) of awake adult rats and performed 3-D reconstructions of electron micrographs from thin sections of both axonal boutons and dendritic spines, 24 h post-induction. The specificity of the observed changes was demonstrated by comparison with animals in which long-term depression (LTD) had been induced, or with animals in which LTP was blocked by an N -methyl- d -aspartate (NMDA) antagonist. Our data demonstrate that whilst the number of boutons remains unchanged, there is a marked increase in the number of synapses per bouton 24 h after the induction of LTP. Further, we demonstrate that this increase is specific to mushroom spines and not attributable to their division. The present investigation thus fills the gap existing between behavioural and in vitro studies on the role of MSB formation in synaptic plasticity and cognitive abilities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23224218</pmid><doi>10.1007/s00429-012-0488-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3851-669X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2014-01, Vol.219 (1), p.407-414
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_hal_primary_oai_HAL_hal_01181226v1
source MEDLINE; SpringerLink Journals
subjects Animal cognition
Animals
Biomedical and Life Sciences
Biomedicine
Biophysics
Brain
Cell Biology
Cognitive Sciences
Computer Simulation
Dendritic Spines
Dendritic Spines - physiology
Dendritic Spines - ultrastructure
Electric Stimulation
Electrodes, Implanted
Excitatory Amino Acid Antagonists
Excitatory Amino Acid Antagonists - pharmacology
Hippocampus
Hippocampus - cytology
Hippocampus - physiology
Life Sciences
Long-Term Potentiation
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
Long-Term Synaptic Depression
Long-Term Synaptic Depression - drug effects
Long-Term Synaptic Depression - physiology
Male
Mental depression
Nerve Net
Nerve Net - physiology
Nerve Net - ultrastructure
Neurobiology
Neurology
Neurons and Cognition
Neurosciences
Piperazines
Piperazines - pharmacology
Psychology and behavior
Rats
Rats, Sprague-Dawley
Rodents
Short Communication
Synapses
Synapses - physiology
Synapses - ultrastructure
Time Factors
Wakefulness
title Multiple spine boutons are formed after long-lasting LTP in the awake rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20spine%20boutons%20are%20formed%20after%20long-lasting%20LTP%20in%20the%20awake%20rat&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Medvedev,%20N.%20I.&rft.date=2014-01-01&rft.volume=219&rft.issue=1&rft.spage=407&rft.epage=414&rft.pages=407-414&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-012-0488-0&rft_dat=%3Cproquest_hal_p%3E1490706444%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473694221&rft_id=info:pmid/23224218&rfr_iscdi=true