A finite difference method for 3D incompressible flows in cylindrical coordinates
In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual pro...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2005-09, Vol.34 (8), p.950-971 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 971 |
---|---|
container_issue | 8 |
container_start_page | 950 |
container_title | Computers & fluids |
container_volume | 34 |
creator | Barbosa, E. Daube, O. |
description | In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of
mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis
r
=
0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented. |
doi_str_mv | 10.1016/j.compfluid.2004.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01179789v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793004001148</els_id><sourcerecordid>29263001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoW6a31BdWuhhN6OVtdo9mvQjAUMpJGchSyMyRl650jol_z5aHNJjT0Izz8w7PIx9EtAKEP3VvnXpcAzxRL7tANYtyBZAv2ErMeixAb3Wb9mqNlSjRwnv2YdS9lD_sluv2O8NDzTRjNxTCJhxcsgPOD8kz0PKXH7jNC0BGUuhXUQeYvpbapG7p0iTz-Rs5C6l7GmyM5aP7F2wseDly3vB7n98v7u-aba_ft5eb7aNW6txbkLo5QihF96Bcwq1VDutwMOopNMaMaCuB4ldGHrspMJBg1964IVVoOQF-3re-2CjOWY62PxkkiVzs9mapQZC6FEP46Oo7Jcze8zpzwnLbA5UHMZoJ0ynYrqx6yXAAuoz6HIqJWN43SzALLrN3rzqNotuA9JU3XXy80uELdVIyHZyVP6N99W9gKFymzOH1c0jYTbF0WLdU0Y3G5_ov1nPjaWaLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29263001</pqid></control><display><type>article</type><title>A finite difference method for 3D incompressible flows in cylindrical coordinates</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Barbosa, E. ; Daube, O.</creator><creatorcontrib>Barbosa, E. ; Daube, O.</creatorcontrib><description>In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of
mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis
r
=
0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2004.03.007</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational methods in fluid dynamics ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Laminar flows in cavities ; Mechanics ; Physics</subject><ispartof>Computers & fluids, 2005-09, Vol.34 (8), p.950-971</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</citedby><cites>FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2004.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16930108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01179789$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, E.</creatorcontrib><creatorcontrib>Daube, O.</creatorcontrib><title>A finite difference method for 3D incompressible flows in cylindrical coordinates</title><title>Computers & fluids</title><description>In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of
mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis
r
=
0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.</description><subject>Computational methods in fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Mechanics</subject><subject>Physics</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoW6a31BdWuhhN6OVtdo9mvQjAUMpJGchSyMyRl650jol_z5aHNJjT0Izz8w7PIx9EtAKEP3VvnXpcAzxRL7tANYtyBZAv2ErMeixAb3Wb9mqNlSjRwnv2YdS9lD_sluv2O8NDzTRjNxTCJhxcsgPOD8kz0PKXH7jNC0BGUuhXUQeYvpbapG7p0iTz-Rs5C6l7GmyM5aP7F2wseDly3vB7n98v7u-aba_ft5eb7aNW6txbkLo5QihF96Bcwq1VDutwMOopNMaMaCuB4ldGHrspMJBg1964IVVoOQF-3re-2CjOWY62PxkkiVzs9mapQZC6FEP46Oo7Jcze8zpzwnLbA5UHMZoJ0ynYrqx6yXAAuoz6HIqJWN43SzALLrN3rzqNotuA9JU3XXy80uELdVIyHZyVP6N99W9gKFymzOH1c0jYTbF0WLdU0Y3G5_ov1nPjaWaLQ</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Barbosa, E.</creator><creator>Daube, O.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20050901</creationdate><title>A finite difference method for 3D incompressible flows in cylindrical coordinates</title><author>Barbosa, E. ; Daube, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, E.</creatorcontrib><creatorcontrib>Daube, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, E.</au><au>Daube, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite difference method for 3D incompressible flows in cylindrical coordinates</atitle><jtitle>Computers & fluids</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>34</volume><issue>8</issue><spage>950</spage><epage>971</epage><pages>950-971</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of
mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis
r
=
0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2004.03.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2005-09, Vol.34 (8), p.950-971 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01179789v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Computational methods in fluid dynamics Engineering Sciences Exact sciences and technology Fluid dynamics Fluids mechanics Fundamental areas of phenomenology (including applications) Laminar flows Laminar flows in cavities Mechanics Physics |
title | A finite difference method for 3D incompressible flows in cylindrical coordinates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20difference%20method%20for%203D%20incompressible%20flows%20in%20cylindrical%20coordinates&rft.jtitle=Computers%20&%20fluids&rft.au=Barbosa,%20E.&rft.date=2005-09-01&rft.volume=34&rft.issue=8&rft.spage=950&rft.epage=971&rft.pages=950-971&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2004.03.007&rft_dat=%3Cproquest_hal_p%3E29263001%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29263001&rft_id=info:pmid/&rft_els_id=S0045793004001148&rfr_iscdi=true |