A finite difference method for 3D incompressible flows in cylindrical coordinates

In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2005-09, Vol.34 (8), p.950-971
Hauptverfasser: Barbosa, E., Daube, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 971
container_issue 8
container_start_page 950
container_title Computers & fluids
container_volume 34
creator Barbosa, E.
Daube, O.
description In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis r = 0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.
doi_str_mv 10.1016/j.compfluid.2004.03.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01179789v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793004001148</els_id><sourcerecordid>29263001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpoW6a31BdWuhhN6OVtdo9mvQjAUMpJGchSyMyRl650jol_z5aHNJjT0Izz8w7PIx9EtAKEP3VvnXpcAzxRL7tANYtyBZAv2ErMeixAb3Wb9mqNlSjRwnv2YdS9lD_sluv2O8NDzTRjNxTCJhxcsgPOD8kz0PKXH7jNC0BGUuhXUQeYvpbapG7p0iTz-Rs5C6l7GmyM5aP7F2wseDly3vB7n98v7u-aba_ft5eb7aNW6txbkLo5QihF96Bcwq1VDutwMOopNMaMaCuB4ldGHrspMJBg1964IVVoOQF-3re-2CjOWY62PxkkiVzs9mapQZC6FEP46Oo7Jcze8zpzwnLbA5UHMZoJ0ynYrqx6yXAAuoz6HIqJWN43SzALLrN3rzqNotuA9JU3XXy80uELdVIyHZyVP6N99W9gKFymzOH1c0jYTbF0WLdU0Y3G5_ov1nPjaWaLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29263001</pqid></control><display><type>article</type><title>A finite difference method for 3D incompressible flows in cylindrical coordinates</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Barbosa, E. ; Daube, O.</creator><creatorcontrib>Barbosa, E. ; Daube, O.</creatorcontrib><description>In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis r = 0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2004.03.007</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computational methods in fluid dynamics ; Engineering Sciences ; Exact sciences and technology ; Fluid dynamics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Laminar flows in cavities ; Mechanics ; Physics</subject><ispartof>Computers &amp; fluids, 2005-09, Vol.34 (8), p.950-971</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</citedby><cites>FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2004.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16930108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01179789$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, E.</creatorcontrib><creatorcontrib>Daube, O.</creatorcontrib><title>A finite difference method for 3D incompressible flows in cylindrical coordinates</title><title>Computers &amp; fluids</title><description>In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis r = 0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.</description><subject>Computational methods in fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Mechanics</subject><subject>Physics</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVpoW6a31BdWuhhN6OVtdo9mvQjAUMpJGchSyMyRl650jol_z5aHNJjT0Izz8w7PIx9EtAKEP3VvnXpcAzxRL7tANYtyBZAv2ErMeixAb3Wb9mqNlSjRwnv2YdS9lD_sluv2O8NDzTRjNxTCJhxcsgPOD8kz0PKXH7jNC0BGUuhXUQeYvpbapG7p0iTz-Rs5C6l7GmyM5aP7F2wseDly3vB7n98v7u-aba_ft5eb7aNW6txbkLo5QihF96Bcwq1VDutwMOopNMaMaCuB4ldGHrspMJBg1964IVVoOQF-3re-2CjOWY62PxkkiVzs9mapQZC6FEP46Oo7Jcze8zpzwnLbA5UHMZoJ0ynYrqx6yXAAuoz6HIqJWN43SzALLrN3rzqNotuA9JU3XXy80uELdVIyHZyVP6N99W9gKFymzOH1c0jYTbF0WLdU0Y3G5_ov1nPjaWaLQ</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Barbosa, E.</creator><creator>Daube, O.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20050901</creationdate><title>A finite difference method for 3D incompressible flows in cylindrical coordinates</title><author>Barbosa, E. ; Daube, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-ff6390f61dc0cc5e735b750d0953c77eefe7ffe1bf86e235e870d953c0d1a5053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, E.</creatorcontrib><creatorcontrib>Daube, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, E.</au><au>Daube, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite difference method for 3D incompressible flows in cylindrical coordinates</atitle><jtitle>Computers &amp; fluids</jtitle><date>2005-09-01</date><risdate>2005</risdate><volume>34</volume><issue>8</issue><spage>950</spage><epage>971</epage><pages>950-971</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>In this work, a finite difference method to solve the incompressible Navier–Stokes equations in cylindrical geometries is presented. It is based upon the use of mimetic discrete first-order operators (divergence, gradient, curl), i.e. operators which satisfy in a discrete sense most of the usual properties of vector analysis in the continuum case. In particular the discrete divergence and gradient operators are negative adjoint with respect to suitable inner products. The axis r = 0 is dealt with within this framework and is therefore no longer considered as a singularity. Results concerning the stability with respect to 3D perturbations of steady axisymmetric flows in cylindrical cavities with one rotating lid, are presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2004.03.007</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2005-09, Vol.34 (8), p.950-971
issn 0045-7930
1879-0747
language eng
recordid cdi_hal_primary_oai_HAL_hal_01179789v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Computational methods in fluid dynamics
Engineering Sciences
Exact sciences and technology
Fluid dynamics
Fluids mechanics
Fundamental areas of phenomenology (including applications)
Laminar flows
Laminar flows in cavities
Mechanics
Physics
title A finite difference method for 3D incompressible flows in cylindrical coordinates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20difference%20method%20for%203D%20incompressible%20flows%20in%20cylindrical%20coordinates&rft.jtitle=Computers%20&%20fluids&rft.au=Barbosa,%20E.&rft.date=2005-09-01&rft.volume=34&rft.issue=8&rft.spage=950&rft.epage=971&rft.pages=950-971&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2004.03.007&rft_dat=%3Cproquest_hal_p%3E29263001%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29263001&rft_id=info:pmid/&rft_els_id=S0045793004001148&rfr_iscdi=true