Block Bootstrap for Poisson‐Sampled Almost Periodic Processes
Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1};...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 2015-05, Vol.36 (3), p.327-351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | Journal of time series analysis |
container_volume | 36 |
creator | Dehay, Dominique Dudek, Anna E. |
description | Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example. |
doi_str_mv | 10.1111/jtsa.12115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01176286v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3662893521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pxU9Q8KJCZ16TNslJuqFOGTjYPIfYptjZLjXplN38CH5GP4mpFQ8ezOVB-OW9lz9Cx4BH4M_FqnVqBBFAvIMGQBMWCi6iXTTAQEkoGI_20YFzK4whoQwG6HJcmew5GBvTutaqJiiMDeamdM6sP98_FqpuKp0HaVUb1wZzbUuTl1kwtybTzml3iPYKVTl99FOH6OH6ajmZhrP7m9tJOgszPyYOGRExzXEkuIaMUxFzTUhCtSKi0DrhuQBPFAHGIqZBkCLKM-CQC_pIRM7JEJ31fZ9UJRtb1spupVGlnKYz2d1hAJZEPHkFb09721jzstGulXXpMl1Vaq3NxklIOMF-EOnoyR-6Mhu79j_xilFBaEypV-e9yqxxzuridwPAsstddrnL79w9hh6_lZXe_iPl3XKR9m--AHolgvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674934544</pqid></control><display><type>article</type><title>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</title><source>Wiley Online Library All Journals</source><creator>Dehay, Dominique ; Dudek, Anna E.</creator><creatorcontrib>Dehay, Dominique ; Dudek, Anna E.</creatorcontrib><description>Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12115</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>APC process ; bootstrap ; Bootstrap mechanism ; Bootstrap method ; confidence interval ; consistency ; Correlation ; cyclic means ; Error ; Estimation ; Mathematical analysis ; Mathematics ; Poisson random sampling scheme ; Sampling ; Statistics ; Studies ; Time series</subject><ispartof>Journal of time series analysis, 2015-05, Vol.36 (3), p.327-351</ispartof><rights>Copyright © 2015 Wiley Publishing Ltd</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</citedby><cites>FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</cites><orcidid>0000-0001-7799-4734 ; 0000-0002-5567-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjtsa.12115$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjtsa.12115$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01176286$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Dudek, Anna E.</creatorcontrib><title>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</title><title>Journal of time series analysis</title><description>Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.</description><subject>APC process</subject><subject>bootstrap</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>confidence interval</subject><subject>consistency</subject><subject>Correlation</subject><subject>cyclic means</subject><subject>Error</subject><subject>Estimation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Poisson random sampling scheme</subject><subject>Sampling</subject><subject>Statistics</subject><subject>Studies</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgCs7pxU9Q8KJCZ16TNslJuqFOGTjYPIfYptjZLjXplN38CH5GP4mpFQ8ezOVB-OW9lz9Cx4BH4M_FqnVqBBFAvIMGQBMWCi6iXTTAQEkoGI_20YFzK4whoQwG6HJcmew5GBvTutaqJiiMDeamdM6sP98_FqpuKp0HaVUb1wZzbUuTl1kwtybTzml3iPYKVTl99FOH6OH6ajmZhrP7m9tJOgszPyYOGRExzXEkuIaMUxFzTUhCtSKi0DrhuQBPFAHGIqZBkCLKM-CQC_pIRM7JEJ31fZ9UJRtb1spupVGlnKYz2d1hAJZEPHkFb09721jzstGulXXpMl1Vaq3NxklIOMF-EOnoyR-6Mhu79j_xilFBaEypV-e9yqxxzuridwPAsstddrnL79w9hh6_lZXe_iPl3XKR9m--AHolgvM</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Dehay, Dominique</creator><creator>Dudek, Anna E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7799-4734</orcidid><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></search><sort><creationdate>201505</creationdate><title>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</title><author>Dehay, Dominique ; Dudek, Anna E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>APC process</topic><topic>bootstrap</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>confidence interval</topic><topic>consistency</topic><topic>Correlation</topic><topic>cyclic means</topic><topic>Error</topic><topic>Estimation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Poisson random sampling scheme</topic><topic>Sampling</topic><topic>Statistics</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Dudek, Anna E.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehay, Dominique</au><au>Dudek, Anna E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</atitle><jtitle>Journal of time series analysis</jtitle><date>2015-05</date><risdate>2015</risdate><volume>36</volume><issue>3</issue><spage>327</spage><epage>351</epage><pages>327-351</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jtsa.12115</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7799-4734</orcidid><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-9782 |
ispartof | Journal of time series analysis, 2015-05, Vol.36 (3), p.327-351 |
issn | 0143-9782 1467-9892 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01176286v1 |
source | Wiley Online Library All Journals |
subjects | APC process bootstrap Bootstrap mechanism Bootstrap method confidence interval consistency Correlation cyclic means Error Estimation Mathematical analysis Mathematics Poisson random sampling scheme Sampling Statistics Studies Time series |
title | Block Bootstrap for Poisson‐Sampled Almost Periodic Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20Bootstrap%20for%20Poisson%E2%80%90Sampled%20Almost%20Periodic%20Processes&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Dehay,%20Dominique&rft.date=2015-05&rft.volume=36&rft.issue=3&rft.spage=327&rft.epage=351&rft.pages=327-351&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12115&rft_dat=%3Cproquest_hal_p%3E3662893521%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674934544&rft_id=info:pmid/&rfr_iscdi=true |