Block Bootstrap for Poisson‐Sampled Almost Periodic Processes

Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1};...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2015-05, Vol.36 (3), p.327-351
Hauptverfasser: Dehay, Dominique, Dudek, Anna E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 3
container_start_page 327
container_title Journal of time series analysis
container_volume 36
creator Dehay, Dominique
Dudek, Anna E.
description Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.
doi_str_mv 10.1111/jtsa.12115
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01176286v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3662893521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7pxU9Q8KJCZ16TNslJuqFOGTjYPIfYptjZLjXplN38CH5GP4mpFQ8ezOVB-OW9lz9Cx4BH4M_FqnVqBBFAvIMGQBMWCi6iXTTAQEkoGI_20YFzK4whoQwG6HJcmew5GBvTutaqJiiMDeamdM6sP98_FqpuKp0HaVUb1wZzbUuTl1kwtybTzml3iPYKVTl99FOH6OH6ajmZhrP7m9tJOgszPyYOGRExzXEkuIaMUxFzTUhCtSKi0DrhuQBPFAHGIqZBkCLKM-CQC_pIRM7JEJ31fZ9UJRtb1spupVGlnKYz2d1hAJZEPHkFb09721jzstGulXXpMl1Vaq3NxklIOMF-EOnoyR-6Mhu79j_xilFBaEypV-e9yqxxzuridwPAsstddrnL79w9hh6_lZXe_iPl3XKR9m--AHolgvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674934544</pqid></control><display><type>article</type><title>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</title><source>Wiley Online Library All Journals</source><creator>Dehay, Dominique ; Dudek, Anna E.</creator><creatorcontrib>Dehay, Dominique ; Dudek, Anna E.</creatorcontrib><description>Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12115</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>APC process ; bootstrap ; Bootstrap mechanism ; Bootstrap method ; confidence interval ; consistency ; Correlation ; cyclic means ; Error ; Estimation ; Mathematical analysis ; Mathematics ; Poisson random sampling scheme ; Sampling ; Statistics ; Studies ; Time series</subject><ispartof>Journal of time series analysis, 2015-05, Vol.36 (3), p.327-351</ispartof><rights>Copyright © 2015 Wiley Publishing Ltd</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</citedby><cites>FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</cites><orcidid>0000-0001-7799-4734 ; 0000-0002-5567-3531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjtsa.12115$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjtsa.12115$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01176286$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Dudek, Anna E.</creatorcontrib><title>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</title><title>Journal of time series analysis</title><description>Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.</description><subject>APC process</subject><subject>bootstrap</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>confidence interval</subject><subject>consistency</subject><subject>Correlation</subject><subject>cyclic means</subject><subject>Error</subject><subject>Estimation</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Poisson random sampling scheme</subject><subject>Sampling</subject><subject>Statistics</subject><subject>Studies</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AgCs7pxU9Q8KJCZ16TNslJuqFOGTjYPIfYptjZLjXplN38CH5GP4mpFQ8ezOVB-OW9lz9Cx4BH4M_FqnVqBBFAvIMGQBMWCi6iXTTAQEkoGI_20YFzK4whoQwG6HJcmew5GBvTutaqJiiMDeamdM6sP98_FqpuKp0HaVUb1wZzbUuTl1kwtybTzml3iPYKVTl99FOH6OH6ajmZhrP7m9tJOgszPyYOGRExzXEkuIaMUxFzTUhCtSKi0DrhuQBPFAHGIqZBkCLKM-CQC_pIRM7JEJ31fZ9UJRtb1spupVGlnKYz2d1hAJZEPHkFb09721jzstGulXXpMl1Vaq3NxklIOMF-EOnoyR-6Mhu79j_xilFBaEypV-e9yqxxzuridwPAsstddrnL79w9hh6_lZXe_iPl3XKR9m--AHolgvM</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Dehay, Dominique</creator><creator>Dudek, Anna E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7799-4734</orcidid><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></search><sort><creationdate>201505</creationdate><title>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</title><author>Dehay, Dominique ; Dudek, Anna E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4715-73954d0298e1c84958e3364ea39fee68d91739a317727e193f2dc181d94b39d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>APC process</topic><topic>bootstrap</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>confidence interval</topic><topic>consistency</topic><topic>Correlation</topic><topic>cyclic means</topic><topic>Error</topic><topic>Estimation</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Poisson random sampling scheme</topic><topic>Sampling</topic><topic>Statistics</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehay, Dominique</creatorcontrib><creatorcontrib>Dudek, Anna E.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehay, Dominique</au><au>Dudek, Anna E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Block Bootstrap for Poisson‐Sampled Almost Periodic Processes</atitle><jtitle>Journal of time series analysis</jtitle><date>2015-05</date><risdate>2015</risdate><volume>36</volume><issue>3</issue><spage>327</spage><epage>351</epage><pages>327-351</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>Let {X(t),t∈R} be an almost periodically correlated process and {N(t),t≥0} be a homogeneous Poisson process and {Tk,k≥1} be its jump moments. We assume that {X(t),t∈R} and {N(t),t≥0} are independent. Moreover, the process {X(t),t∈R} is not observed continuously but only in the time moments {Tk,k≥1}; In this paper, we focus on the estimation of the cyclic means of {X(t),t∈R}. The asymptotic normality of the rescaled error of the estimator is shown. Additionally, the bootstrap method based on the circular block bootstrap is proposed. The consistency of the bootstrap technique is proved, and the bootstrap pointwise and simultaneous confidence intervals for the cyclic means are constructed. The results are illustrated by a simulated data example.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jtsa.12115</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-7799-4734</orcidid><orcidid>https://orcid.org/0000-0002-5567-3531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2015-05, Vol.36 (3), p.327-351
issn 0143-9782
1467-9892
language eng
recordid cdi_hal_primary_oai_HAL_hal_01176286v1
source Wiley Online Library All Journals
subjects APC process
bootstrap
Bootstrap mechanism
Bootstrap method
confidence interval
consistency
Correlation
cyclic means
Error
Estimation
Mathematical analysis
Mathematics
Poisson random sampling scheme
Sampling
Statistics
Studies
Time series
title Block Bootstrap for Poisson‐Sampled Almost Periodic Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Block%20Bootstrap%20for%20Poisson%E2%80%90Sampled%20Almost%20Periodic%20Processes&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Dehay,%20Dominique&rft.date=2015-05&rft.volume=36&rft.issue=3&rft.spage=327&rft.epage=351&rft.pages=327-351&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12115&rft_dat=%3Cproquest_hal_p%3E3662893521%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674934544&rft_id=info:pmid/&rfr_iscdi=true