Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation

This article deals with the two-stage stochastic model, which aims at explicitly taking into account uncertainty in optimization problems, that Kong and Schaefer have recently studied for the maximum weight matching problem [N. Kong, A.J. Schaefer, A factor 1/2 approximation algorithm for two-stage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2010-08, Vol.205 (1), p.19-30
Hauptverfasser: Escoffier, Bruno, Gourvès, Laurent, Monnot, Jérôme, Spanjaard, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 19
container_title European journal of operational research
container_volume 205
creator Escoffier, Bruno
Gourvès, Laurent
Monnot, Jérôme
Spanjaard, Olivier
description This article deals with the two-stage stochastic model, which aims at explicitly taking into account uncertainty in optimization problems, that Kong and Schaefer have recently studied for the maximum weight matching problem [N. Kong, A.J. Schaefer, A factor 1/2 approximation algorithm for two-stage stochastic matching problems, European Journal of Operational Research 172(3) (2006) 740–746]. They have proved that the problem is NP-hard, and they have provided a factor 1 2 approximation algorithm. We further study this problem and strengthen the hardness results, slightly improve the approximation ratio and exhibit some polynomial cases. We similarly tackle the maximum weight spanning tree problem in the two-stage setting. Finally, we make numerical experiments on randomly generated instances to compare the quality of several interesting heuristics.
doi_str_mv 10.1016/j.ejor.2009.12.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01170295v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221709009126</els_id><sourcerecordid>1960418941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-dd0c3295eff564a88d5ccef711f7341d4bb531868e4682448296d346643205b93</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBBILIU_wClC4sAh4dmOEwdxqSr6Ia0Eh3I2Xuel6ygbBztd2H_PS1PtEUv2s62ZeeMxY-85FBx49bkvsA-xEABNwUUBUL5gG65rkVe6gpdsA7KucyF4_Zq9SakHAK642rBf939Cnmb7gFmag9vbNHuXHezs9n58yOzYZmmy47gc5oiYTTHsBjykL9mPMJzGcPB2yPxIEqPD9ESwE4H-ehLxYXzLXnV2SPjuuV6wn9ff7q9u8-33m7ury23ulBRz3rbgpGgUdp2qSqt1q5zDrua8q2XJ23K3U5LrSmNZaVGWWjRVK8uqKqUAtWvkBfu06u7tYKZI3ePJBOvN7eXWLHfAeQ3U4cgJ-2HFks_fj5hm04fHOJI9I4AEha4VgcQKcjGkFLE7q3IwS-imN0voZgndcGEodCLdraSIE7ozA2kQFJM5GmnJMK2npx1pSTIpLac5LbUxEsx-PpDWx2eXNjk7dJES9umsKYQCer8m3NcVhxTv0WM0yXmk32h9RDebNvj_Wf4HtuewCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204322875</pqid></control><display><type>article</type><title>Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Escoffier, Bruno ; Gourvès, Laurent ; Monnot, Jérôme ; Spanjaard, Olivier</creator><creatorcontrib>Escoffier, Bruno ; Gourvès, Laurent ; Monnot, Jérôme ; Spanjaard, Olivier</creatorcontrib><description>This article deals with the two-stage stochastic model, which aims at explicitly taking into account uncertainty in optimization problems, that Kong and Schaefer have recently studied for the maximum weight matching problem [N. Kong, A.J. Schaefer, A factor 1/2 approximation algorithm for two-stage stochastic matching problems, European Journal of Operational Research 172(3) (2006) 740–746]. They have proved that the problem is NP-hard, and they have provided a factor 1 2 approximation algorithm. We further study this problem and strengthen the hardness results, slightly improve the approximation ratio and exhibit some polynomial cases. We similarly tackle the maximum weight spanning tree problem in the two-stage setting. Finally, we make numerical experiments on randomly generated instances to compare the quality of several interesting heuristics.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2009.12.004</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Approximation ; Approximation algorithms ; Combinatorial optimization ; Computer Science ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Graph theory ; Heuristic ; Matching ; Mathematical programming ; Maximum spanning tree ; Operational research and scientific management ; Operational research. Management science ; Optimization algorithms ; Stochastic models ; Stochastic programming ; Stochastic programming Approximation algorithms Matching Maximum spanning tree Combinatorial optimization ; Studies ; Uncertainty</subject><ispartof>European journal of operational research, 2010-08, Vol.205 (1), p.19-30</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Aug 16, 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-dd0c3295eff564a88d5ccef711f7341d4bb531868e4682448296d346643205b93</citedby><cites>FETCH-LOGICAL-c532t-dd0c3295eff564a88d5ccef711f7341d4bb531868e4682448296d346643205b93</cites><orcidid>0000-0002-7452-6553 ; 0000-0002-9948-090X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2009.12.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22504668$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeejores/v_3a205_3ay_3a2010_3ai_3a1_3ap_3a19-30.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01170295$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Gourvès, Laurent</creatorcontrib><creatorcontrib>Monnot, Jérôme</creatorcontrib><creatorcontrib>Spanjaard, Olivier</creatorcontrib><title>Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation</title><title>European journal of operational research</title><description>This article deals with the two-stage stochastic model, which aims at explicitly taking into account uncertainty in optimization problems, that Kong and Schaefer have recently studied for the maximum weight matching problem [N. Kong, A.J. Schaefer, A factor 1/2 approximation algorithm for two-stage stochastic matching problems, European Journal of Operational Research 172(3) (2006) 740–746]. They have proved that the problem is NP-hard, and they have provided a factor 1 2 approximation algorithm. We further study this problem and strengthen the hardness results, slightly improve the approximation ratio and exhibit some polynomial cases. We similarly tackle the maximum weight spanning tree problem in the two-stage setting. Finally, we make numerical experiments on randomly generated instances to compare the quality of several interesting heuristics.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Combinatorial optimization</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Graph theory</subject><subject>Heuristic</subject><subject>Matching</subject><subject>Mathematical programming</subject><subject>Maximum spanning tree</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization algorithms</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Stochastic programming Approximation algorithms Matching Maximum spanning tree Combinatorial optimization</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9UU1v1DAUtBBILIU_wClC4sAh4dmOEwdxqSr6Ia0Eh3I2Xuel6ygbBztd2H_PS1PtEUv2s62ZeeMxY-85FBx49bkvsA-xEABNwUUBUL5gG65rkVe6gpdsA7KucyF4_Zq9SakHAK642rBf939Cnmb7gFmag9vbNHuXHezs9n58yOzYZmmy47gc5oiYTTHsBjykL9mPMJzGcPB2yPxIEqPD9ESwE4H-ehLxYXzLXnV2SPjuuV6wn9ff7q9u8-33m7ury23ulBRz3rbgpGgUdp2qSqt1q5zDrua8q2XJ23K3U5LrSmNZaVGWWjRVK8uqKqUAtWvkBfu06u7tYKZI3ePJBOvN7eXWLHfAeQ3U4cgJ-2HFks_fj5hm04fHOJI9I4AEha4VgcQKcjGkFLE7q3IwS-imN0voZgndcGEodCLdraSIE7ozA2kQFJM5GmnJMK2npx1pSTIpLac5LbUxEsx-PpDWx2eXNjk7dJES9umsKYQCer8m3NcVhxTv0WM0yXmk32h9RDebNvj_Wf4HtuewCg</recordid><startdate>20100816</startdate><enddate>20100816</enddate><creator>Escoffier, Bruno</creator><creator>Gourvès, Laurent</creator><creator>Monnot, Jérôme</creator><creator>Spanjaard, Olivier</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7452-6553</orcidid><orcidid>https://orcid.org/0000-0002-9948-090X</orcidid></search><sort><creationdate>20100816</creationdate><title>Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation</title><author>Escoffier, Bruno ; Gourvès, Laurent ; Monnot, Jérôme ; Spanjaard, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-dd0c3295eff564a88d5ccef711f7341d4bb531868e4682448296d346643205b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Combinatorial optimization</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Graph theory</topic><topic>Heuristic</topic><topic>Matching</topic><topic>Mathematical programming</topic><topic>Maximum spanning tree</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization algorithms</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Stochastic programming Approximation algorithms Matching Maximum spanning tree Combinatorial optimization</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escoffier, Bruno</creatorcontrib><creatorcontrib>Gourvès, Laurent</creatorcontrib><creatorcontrib>Monnot, Jérôme</creatorcontrib><creatorcontrib>Spanjaard, Olivier</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escoffier, Bruno</au><au>Gourvès, Laurent</au><au>Monnot, Jérôme</au><au>Spanjaard, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation</atitle><jtitle>European journal of operational research</jtitle><date>2010-08-16</date><risdate>2010</risdate><volume>205</volume><issue>1</issue><spage>19</spage><epage>30</epage><pages>19-30</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>This article deals with the two-stage stochastic model, which aims at explicitly taking into account uncertainty in optimization problems, that Kong and Schaefer have recently studied for the maximum weight matching problem [N. Kong, A.J. Schaefer, A factor 1/2 approximation algorithm for two-stage stochastic matching problems, European Journal of Operational Research 172(3) (2006) 740–746]. They have proved that the problem is NP-hard, and they have provided a factor 1 2 approximation algorithm. We further study this problem and strengthen the hardness results, slightly improve the approximation ratio and exhibit some polynomial cases. We similarly tackle the maximum weight spanning tree problem in the two-stage setting. Finally, we make numerical experiments on randomly generated instances to compare the quality of several interesting heuristics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2009.12.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7452-6553</orcidid><orcidid>https://orcid.org/0000-0002-9948-090X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2010-08, Vol.205 (1), p.19-30
issn 0377-2217
1872-6860
language eng
recordid cdi_hal_primary_oai_HAL_hal_01170295v1
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applied sciences
Approximation
Approximation algorithms
Combinatorial optimization
Computer Science
Exact sciences and technology
Flows in networks. Combinatorial problems
Graph theory
Heuristic
Matching
Mathematical programming
Maximum spanning tree
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Stochastic models
Stochastic programming
Stochastic programming Approximation algorithms Matching Maximum spanning tree Combinatorial optimization
Studies
Uncertainty
title Two-stage stochastic matching and spanning tree problems: Polynomial instances and approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-stage%20stochastic%20matching%20and%20spanning%20tree%20problems:%20Polynomial%20instances%20and%20approximation&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Escoffier,%20Bruno&rft.date=2010-08-16&rft.volume=205&rft.issue=1&rft.spage=19&rft.epage=30&rft.pages=19-30&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2009.12.004&rft_dat=%3Cproquest_hal_p%3E1960418941%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204322875&rft_id=info:pmid/&rft_els_id=S0377221709009126&rfr_iscdi=true