Compressive Sensing Pattern Matching Techniques for Synthesizing Planar Sparse Arrays
In this paper, the design of sparse planar arrays is yielded through a set of innovative and efficient pattern matching algorithms within the Bayesian Compressive Sensing (BCS) framework. Towards this end, the 2D sparse synthesis problem is formulated in a probabilistic fashion and the single-task (...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2013-09, Vol.61 (9), p.4577-4587 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the design of sparse planar arrays is yielded through a set of innovative and efficient pattern matching algorithms within the Bayesian Compressive Sensing (BCS) framework. Towards this end, the 2D sparse synthesis problem is formulated in a probabilistic fashion and the single-task (ST) and the multi-task (MT) BCS solutions are derived. The results from a numerical validation concerned with different aperture size and target patterns prove that the proposed implementations enable an element saving ranging from 25% up to 87%, while achieving a reliable beam control. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2013.2267195 |