Statistical clustering of temporal networks through a dynamic stochastic block model

Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2017-09, Vol.79 (4), p.1119-1141
Hauptverfasser: Matias, Catherine, Miele, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1141
container_issue 4
container_start_page 1119
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 79
creator Matias, Catherine
Miele, Vincent
description Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.
doi_str_mv 10.1111/rssb.12200
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01167837v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26773154</jstor_id><sourcerecordid>26773154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFY37oWAK4XRPGbyWNaiVigItq5Dksm0U6dNTVJL_72po116N_dy-M7hcrLsEsE7lObeh6DvEMYQHmU9VFCWC075cboJFTkrED7NzkJYwDSUkV42nUQVmxAbo1pg2k2I1jerGXA1iHa5dj7JKxu3zn8EEOfebWZzoEC1W6llY0CIzszV3g5068wHWLrKtufZSa3aYC9-dz97f3qcDkf5-PX5ZTgY56YQGOacElKWZYVqxSCmZampxZUQtYAWsVpTAhWri1JAipCmnFOhtcbKGE0LWxWkn910uXPVyrVvlsrvpFONHA3Gcq9BhCjjhH3hxF537Nq7z40NUS7cxq_SexIJzLHgjKNE3XaU8S4Eb-tDLIJy37DcNyx_Gk4w6uBt09rdP6R8m0we_jxXnWeRqvMHD6aMEVQW5BvxOIcy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928298781</pqid></control><display><type>article</type><title>Statistical clustering of temporal networks through a dynamic stochastic block model</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR Complete Journals</source><source>Wiley Journals Collection</source><source>Oxford Journals</source><source>EBSCOhost Business Source Complete</source><creator>Matias, Catherine ; Miele, Vincent</creator><creatorcontrib>Matias, Catherine ; Miele, Vincent</creatorcontrib><description>Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12200</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Binary data ; Clustering ; Contact network ; Discrete time ; Dynamic random graph ; Graph clustering ; Graphs ; Group dynamics ; Markov chains ; Mathematics ; Networks ; Parameter identification ; Regression analysis ; Secondary schools ; Statistical inference ; Statistical methods ; Statistics ; Stochastic block model ; Stochastic models ; Switching theory ; Variational expectation–maximization</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2017-09, Vol.79 (4), p.1119-1141</ispartof><rights>2016 Royal Statistical Society</rights><rights>Copyright © 2017 The Royal Statistical Society and Blackwell Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</citedby><cites>FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</cites><orcidid>0000-0001-6665-2421 ; 0000-0001-7584-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26773154$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26773154$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01167837$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Matias, Catherine</creatorcontrib><creatorcontrib>Miele, Vincent</creatorcontrib><title>Statistical clustering of temporal networks through a dynamic stochastic block model</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.</description><subject>Binary data</subject><subject>Clustering</subject><subject>Contact network</subject><subject>Discrete time</subject><subject>Dynamic random graph</subject><subject>Graph clustering</subject><subject>Graphs</subject><subject>Group dynamics</subject><subject>Markov chains</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Parameter identification</subject><subject>Regression analysis</subject><subject>Secondary schools</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stochastic block model</subject><subject>Stochastic models</subject><subject>Switching theory</subject><subject>Variational expectation–maximization</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFY37oWAK4XRPGbyWNaiVigItq5Dksm0U6dNTVJL_72po116N_dy-M7hcrLsEsE7lObeh6DvEMYQHmU9VFCWC075cboJFTkrED7NzkJYwDSUkV42nUQVmxAbo1pg2k2I1jerGXA1iHa5dj7JKxu3zn8EEOfebWZzoEC1W6llY0CIzszV3g5068wHWLrKtufZSa3aYC9-dz97f3qcDkf5-PX5ZTgY56YQGOacElKWZYVqxSCmZampxZUQtYAWsVpTAhWri1JAipCmnFOhtcbKGE0LWxWkn910uXPVyrVvlsrvpFONHA3Gcq9BhCjjhH3hxF537Nq7z40NUS7cxq_SexIJzLHgjKNE3XaU8S4Eb-tDLIJy37DcNyx_Gk4w6uBt09rdP6R8m0we_jxXnWeRqvMHD6aMEVQW5BvxOIcy</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Matias, Catherine</creator><creator>Miele, Vincent</creator><general>Wiley</general><general>Oxford University Press</general><general>Royal Statistical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6665-2421</orcidid><orcidid>https://orcid.org/0000-0001-7584-0088</orcidid></search><sort><creationdate>201709</creationdate><title>Statistical clustering of temporal networks through a dynamic stochastic block model</title><author>Matias, Catherine ; Miele, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binary data</topic><topic>Clustering</topic><topic>Contact network</topic><topic>Discrete time</topic><topic>Dynamic random graph</topic><topic>Graph clustering</topic><topic>Graphs</topic><topic>Group dynamics</topic><topic>Markov chains</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Parameter identification</topic><topic>Regression analysis</topic><topic>Secondary schools</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stochastic block model</topic><topic>Stochastic models</topic><topic>Switching theory</topic><topic>Variational expectation–maximization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matias, Catherine</creatorcontrib><creatorcontrib>Miele, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matias, Catherine</au><au>Miele, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical clustering of temporal networks through a dynamic stochastic block model</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2017-09</date><risdate>2017</risdate><volume>79</volume><issue>4</issue><spage>1119</spage><epage>1141</epage><pages>1119-1141</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/rssb.12200</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6665-2421</orcidid><orcidid>https://orcid.org/0000-0001-7584-0088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2017-09, Vol.79 (4), p.1119-1141
issn 1369-7412
1467-9868
language eng
recordid cdi_hal_primary_oai_HAL_hal_01167837v2
source JSTOR Mathematics and Statistics; JSTOR Complete Journals; Wiley Journals Collection; Oxford Journals; EBSCOhost Business Source Complete
subjects Binary data
Clustering
Contact network
Discrete time
Dynamic random graph
Graph clustering
Graphs
Group dynamics
Markov chains
Mathematics
Networks
Parameter identification
Regression analysis
Secondary schools
Statistical inference
Statistical methods
Statistics
Stochastic block model
Stochastic models
Switching theory
Variational expectation–maximization
title Statistical clustering of temporal networks through a dynamic stochastic block model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20clustering%20of%20temporal%20networks%20through%20a%20dynamic%20stochastic%20block%20model&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Matias,%20Catherine&rft.date=2017-09&rft.volume=79&rft.issue=4&rft.spage=1119&rft.epage=1141&rft.pages=1119-1141&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12200&rft_dat=%3Cjstor_hal_p%3E26773154%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928298781&rft_id=info:pmid/&rft_jstor_id=26773154&rfr_iscdi=true