Statistical clustering of temporal networks through a dynamic stochastic block model
Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2017-09, Vol.79 (4), p.1119-1141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1141 |
---|---|
container_issue | 4 |
container_start_page | 1119 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 79 |
creator | Matias, Catherine Miele, Vincent |
description | Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm. |
doi_str_mv | 10.1111/rssb.12200 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01167837v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26773154</jstor_id><sourcerecordid>26773154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFY37oWAK4XRPGbyWNaiVigItq5Dksm0U6dNTVJL_72po116N_dy-M7hcrLsEsE7lObeh6DvEMYQHmU9VFCWC075cboJFTkrED7NzkJYwDSUkV42nUQVmxAbo1pg2k2I1jerGXA1iHa5dj7JKxu3zn8EEOfebWZzoEC1W6llY0CIzszV3g5068wHWLrKtufZSa3aYC9-dz97f3qcDkf5-PX5ZTgY56YQGOacElKWZYVqxSCmZampxZUQtYAWsVpTAhWri1JAipCmnFOhtcbKGE0LWxWkn910uXPVyrVvlsrvpFONHA3Gcq9BhCjjhH3hxF537Nq7z40NUS7cxq_SexIJzLHgjKNE3XaU8S4Eb-tDLIJy37DcNyx_Gk4w6uBt09rdP6R8m0we_jxXnWeRqvMHD6aMEVQW5BvxOIcy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928298781</pqid></control><display><type>article</type><title>Statistical clustering of temporal networks through a dynamic stochastic block model</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR Complete Journals</source><source>Wiley Journals Collection</source><source>Oxford Journals</source><source>EBSCOhost Business Source Complete</source><creator>Matias, Catherine ; Miele, Vincent</creator><creatorcontrib>Matias, Catherine ; Miele, Vincent</creatorcontrib><description>Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12200</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Binary data ; Clustering ; Contact network ; Discrete time ; Dynamic random graph ; Graph clustering ; Graphs ; Group dynamics ; Markov chains ; Mathematics ; Networks ; Parameter identification ; Regression analysis ; Secondary schools ; Statistical inference ; Statistical methods ; Statistics ; Stochastic block model ; Stochastic models ; Switching theory ; Variational expectation–maximization</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2017-09, Vol.79 (4), p.1119-1141</ispartof><rights>2016 Royal Statistical Society</rights><rights>Copyright © 2017 The Royal Statistical Society and Blackwell Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</citedby><cites>FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</cites><orcidid>0000-0001-6665-2421 ; 0000-0001-7584-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26773154$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26773154$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01167837$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Matias, Catherine</creatorcontrib><creatorcontrib>Miele, Vincent</creatorcontrib><title>Statistical clustering of temporal networks through a dynamic stochastic block model</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.</description><subject>Binary data</subject><subject>Clustering</subject><subject>Contact network</subject><subject>Discrete time</subject><subject>Dynamic random graph</subject><subject>Graph clustering</subject><subject>Graphs</subject><subject>Group dynamics</subject><subject>Markov chains</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Parameter identification</subject><subject>Regression analysis</subject><subject>Secondary schools</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stochastic block model</subject><subject>Stochastic models</subject><subject>Switching theory</subject><subject>Variational expectation–maximization</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFY37oWAK4XRPGbyWNaiVigItq5Dksm0U6dNTVJL_72po116N_dy-M7hcrLsEsE7lObeh6DvEMYQHmU9VFCWC075cboJFTkrED7NzkJYwDSUkV42nUQVmxAbo1pg2k2I1jerGXA1iHa5dj7JKxu3zn8EEOfebWZzoEC1W6llY0CIzszV3g5068wHWLrKtufZSa3aYC9-dz97f3qcDkf5-PX5ZTgY56YQGOacElKWZYVqxSCmZampxZUQtYAWsVpTAhWri1JAipCmnFOhtcbKGE0LWxWkn910uXPVyrVvlsrvpFONHA3Gcq9BhCjjhH3hxF537Nq7z40NUS7cxq_SexIJzLHgjKNE3XaU8S4Eb-tDLIJy37DcNyx_Gk4w6uBt09rdP6R8m0we_jxXnWeRqvMHD6aMEVQW5BvxOIcy</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Matias, Catherine</creator><creator>Miele, Vincent</creator><general>Wiley</general><general>Oxford University Press</general><general>Royal Statistical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6665-2421</orcidid><orcidid>https://orcid.org/0000-0001-7584-0088</orcidid></search><sort><creationdate>201709</creationdate><title>Statistical clustering of temporal networks through a dynamic stochastic block model</title><author>Matias, Catherine ; Miele, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4920-8633555d1fa702655b6e2d99f90e17fb630a7f4590611b68869bbb2accb64ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Binary data</topic><topic>Clustering</topic><topic>Contact network</topic><topic>Discrete time</topic><topic>Dynamic random graph</topic><topic>Graph clustering</topic><topic>Graphs</topic><topic>Group dynamics</topic><topic>Markov chains</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Parameter identification</topic><topic>Regression analysis</topic><topic>Secondary schools</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stochastic block model</topic><topic>Stochastic models</topic><topic>Switching theory</topic><topic>Variational expectation–maximization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matias, Catherine</creatorcontrib><creatorcontrib>Miele, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matias, Catherine</au><au>Miele, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical clustering of temporal networks through a dynamic stochastic block model</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2017-09</date><risdate>2017</risdate><volume>79</volume><issue>4</issue><spage>1119</spage><epage>1141</epage><pages>1119-1141</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model for its static part with independent Markov chains for the evolution of the nodes groups through time.We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the importance of controlling for label switching issues across the different time steps, focuses on detecting groups characterized by a stable within-group connectivity behaviour. We study identifiability of the model parameters and propose an inference procedure based on a variational expectation–maximization algorithm as well as a model selection criterion to select the number of groups. We carefully discuss our initialization strategy which plays an important role in the method and we compare our procedure with existing procedures on synthetic data sets.We also illustrate our approach on dynamic contact networks: one of encounters between high school students and two others on animal interactions. An implementation of the method is available as an R package called dynsbm.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/rssb.12200</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6665-2421</orcidid><orcidid>https://orcid.org/0000-0001-7584-0088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2017-09, Vol.79 (4), p.1119-1141 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01167837v2 |
source | JSTOR Mathematics and Statistics; JSTOR Complete Journals; Wiley Journals Collection; Oxford Journals; EBSCOhost Business Source Complete |
subjects | Binary data Clustering Contact network Discrete time Dynamic random graph Graph clustering Graphs Group dynamics Markov chains Mathematics Networks Parameter identification Regression analysis Secondary schools Statistical inference Statistical methods Statistics Stochastic block model Stochastic models Switching theory Variational expectation–maximization |
title | Statistical clustering of temporal networks through a dynamic stochastic block model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20clustering%20of%20temporal%20networks%20through%20a%20dynamic%20stochastic%20block%20model&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Matias,%20Catherine&rft.date=2017-09&rft.volume=79&rft.issue=4&rft.spage=1119&rft.epage=1141&rft.pages=1119-1141&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12200&rft_dat=%3Cjstor_hal_p%3E26773154%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928298781&rft_id=info:pmid/&rft_jstor_id=26773154&rfr_iscdi=true |