Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate

•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the ano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2014-01, Vol.413 (413), p.31-36
Hauptverfasser: Fori, B., Taberna, P.L., Arurault, L., Bonino, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 413
container_start_page 31
container_title Journal of colloid and interface science
container_volume 413
creator Fori, B.
Taberna, P.L.
Arurault, L.
Bonino, J.P.
description •Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film. The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.
doi_str_mv 10.1016/j.jcis.2013.08.011
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01162049v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979713007431</els_id><sourcerecordid>1449273591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</originalsourceid><addsrcrecordid>eNqFksuO1DAQRSMEYpqBH2CBvEGCRYIfcRJLbEbDY5BaYgNry7ErM245drCdluZL-F0cddNLWFmuOnV1XddV9ZrghmDSfTg0B21TQzFhDR4aTMiTakew4HVPMHta7TCmpBa96K-qFykdcCE4F8-rK9qSgbW031W_P0HRsEdA1k9uBa8BhQnp4FywRjmU1rSATzb4UvRm1dkebX5EZo3W3yNwoHMMy0OIkK1Gdl4i3HuVt4EitIQY1oSUD6Z0J-vmoriUagaDCkIwx0i5dbberltvTDmqDC-rZ5NyCV6dz-vq55fPP27v6v33r99ub_a15qzNNTOGU8MmY7RmAFwQLejYk5a3qhsJ6Qyf-tHgQXcDFRzKDbpxGgFEP2Do2HX1_qT7oJxcop1VfJRBWXl3s5dbreyso7gVR1LYdyd2ieHXCinL2SYNzikP5ZGScMJazhjj_0fbVtCeFb8FpSdUx5BShOlig2C55SwPcstZbjlLPGyOytCbs_46zmAuI3-DLcDbM6CSVm6Kym8aF26gnHCGC_fxxEFZ8tFClEnb7RcYG0uy0gT7Lx9_AGP4yW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449273591</pqid></control><display><type>article</type><title>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fori, B. ; Taberna, P.L. ; Arurault, L. ; Bonino, J.P.</creator><creatorcontrib>Fori, B. ; Taberna, P.L. ; Arurault, L. ; Bonino, J.P.</creatorcontrib><description>•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film. The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2013.08.011</identifier><identifier>PMID: 24183427</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aluminium ; Aluminium alloy ; Anodic ; Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Colloids ; Electrochemistry ; Electrophoretic deposition ; Engineering Sciences ; Exact sciences and technology ; General and physical chemistry ; Impregnation ; Material chemistry ; Materials ; Migration ; Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) ; Nanoparticles ; Porosity ; Porous materials ; Supported anodic film ; Suspension conductivity ; Walls</subject><ispartof>Journal of colloid and interface science, 2014-01, Vol.413 (413), p.31-36</ispartof><rights>2013 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</citedby><cites>FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</cites><orcidid>0000-0002-5310-0481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2013.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28251530$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24183427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01162049$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fori, B.</creatorcontrib><creatorcontrib>Taberna, P.L.</creatorcontrib><creatorcontrib>Arurault, L.</creatorcontrib><creatorcontrib>Bonino, J.P.</creatorcontrib><title>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film. The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.</description><subject>Aluminium</subject><subject>Aluminium alloy</subject><subject>Anodic</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids</subject><subject>Electrochemistry</subject><subject>Electrophoretic deposition</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Impregnation</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Migration</subject><subject>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</subject><subject>Nanoparticles</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Supported anodic film</subject><subject>Suspension conductivity</subject><subject>Walls</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFksuO1DAQRSMEYpqBH2CBvEGCRYIfcRJLbEbDY5BaYgNry7ErM245drCdluZL-F0cddNLWFmuOnV1XddV9ZrghmDSfTg0B21TQzFhDR4aTMiTakew4HVPMHta7TCmpBa96K-qFykdcCE4F8-rK9qSgbW031W_P0HRsEdA1k9uBa8BhQnp4FywRjmU1rSATzb4UvRm1dkebX5EZo3W3yNwoHMMy0OIkK1Gdl4i3HuVt4EitIQY1oSUD6Z0J-vmoriUagaDCkIwx0i5dbberltvTDmqDC-rZ5NyCV6dz-vq55fPP27v6v33r99ub_a15qzNNTOGU8MmY7RmAFwQLejYk5a3qhsJ6Qyf-tHgQXcDFRzKDbpxGgFEP2Do2HX1_qT7oJxcop1VfJRBWXl3s5dbreyso7gVR1LYdyd2ieHXCinL2SYNzikP5ZGScMJazhjj_0fbVtCeFb8FpSdUx5BShOlig2C55SwPcstZbjlLPGyOytCbs_46zmAuI3-DLcDbM6CSVm6Kym8aF26gnHCGC_fxxEFZ8tFClEnb7RcYG0uy0gT7Lx9_AGP4yW0</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Fori, B.</creator><creator>Taberna, P.L.</creator><creator>Arurault, L.</creator><creator>Bonino, J.P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5310-0481</orcidid></search><sort><creationdate>20140101</creationdate><title>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</title><author>Fori, B. ; Taberna, P.L. ; Arurault, L. ; Bonino, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminium</topic><topic>Aluminium alloy</topic><topic>Anodic</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids</topic><topic>Electrochemistry</topic><topic>Electrophoretic deposition</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Impregnation</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Migration</topic><topic>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</topic><topic>Nanoparticles</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Supported anodic film</topic><topic>Suspension conductivity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fori, B.</creatorcontrib><creatorcontrib>Taberna, P.L.</creatorcontrib><creatorcontrib>Arurault, L.</creatorcontrib><creatorcontrib>Bonino, J.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fori, B.</au><au>Taberna, P.L.</au><au>Arurault, L.</au><au>Bonino, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>413</volume><issue>413</issue><spage>31</spage><epage>36</epage><pages>31-36</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film. The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>24183427</pmid><doi>10.1016/j.jcis.2013.08.011</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5310-0481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2014-01, Vol.413 (413), p.31-36
issn 0021-9797
1095-7103
language eng
recordid cdi_hal_primary_oai_HAL_hal_01162049v1
source Access via ScienceDirect (Elsevier)
subjects Aluminium
Aluminium alloy
Anodic
Chemical Sciences
Chemistry
Colloidal state and disperse state
Colloids
Electrochemistry
Electrophoretic deposition
Engineering Sciences
Exact sciences and technology
General and physical chemistry
Impregnation
Material chemistry
Materials
Migration
Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)
Nanoparticles
Porosity
Porous materials
Supported anodic film
Suspension conductivity
Walls
title Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decisive%20influence%20of%20colloidal%20suspension%20conductivity%20during%20electrophoretic%20impregnation%20of%20porous%20anodic%20film%20supported%20on%201050%20aluminium%20substrate&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Fori,%20B.&rft.date=2014-01-01&rft.volume=413&rft.issue=413&rft.spage=31&rft.epage=36&rft.pages=31-36&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2013.08.011&rft_dat=%3Cproquest_hal_p%3E1449273591%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449273591&rft_id=info:pmid/24183427&rft_els_id=S0021979713007431&rfr_iscdi=true