Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate
•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the ano...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2014-01, Vol.413 (413), p.31-36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 413 |
container_start_page | 31 |
container_title | Journal of colloid and interface science |
container_volume | 413 |
creator | Fori, B. Taberna, P.L. Arurault, L. Bonino, J.P. |
description | •Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film.
The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth. |
doi_str_mv | 10.1016/j.jcis.2013.08.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01162049v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979713007431</els_id><sourcerecordid>1449273591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</originalsourceid><addsrcrecordid>eNqFksuO1DAQRSMEYpqBH2CBvEGCRYIfcRJLbEbDY5BaYgNry7ErM245drCdluZL-F0cddNLWFmuOnV1XddV9ZrghmDSfTg0B21TQzFhDR4aTMiTakew4HVPMHta7TCmpBa96K-qFykdcCE4F8-rK9qSgbW031W_P0HRsEdA1k9uBa8BhQnp4FywRjmU1rSATzb4UvRm1dkebX5EZo3W3yNwoHMMy0OIkK1Gdl4i3HuVt4EitIQY1oSUD6Z0J-vmoriUagaDCkIwx0i5dbberltvTDmqDC-rZ5NyCV6dz-vq55fPP27v6v33r99ub_a15qzNNTOGU8MmY7RmAFwQLejYk5a3qhsJ6Qyf-tHgQXcDFRzKDbpxGgFEP2Do2HX1_qT7oJxcop1VfJRBWXl3s5dbreyso7gVR1LYdyd2ieHXCinL2SYNzikP5ZGScMJazhjj_0fbVtCeFb8FpSdUx5BShOlig2C55SwPcstZbjlLPGyOytCbs_46zmAuI3-DLcDbM6CSVm6Kym8aF26gnHCGC_fxxEFZ8tFClEnb7RcYG0uy0gT7Lx9_AGP4yW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449273591</pqid></control><display><type>article</type><title>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fori, B. ; Taberna, P.L. ; Arurault, L. ; Bonino, J.P.</creator><creatorcontrib>Fori, B. ; Taberna, P.L. ; Arurault, L. ; Bonino, J.P.</creatorcontrib><description>•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film.
The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2013.08.011</identifier><identifier>PMID: 24183427</identifier><identifier>CODEN: JCISA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Aluminium ; Aluminium alloy ; Anodic ; Chemical Sciences ; Chemistry ; Colloidal state and disperse state ; Colloids ; Electrochemistry ; Electrophoretic deposition ; Engineering Sciences ; Exact sciences and technology ; General and physical chemistry ; Impregnation ; Material chemistry ; Materials ; Migration ; Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) ; Nanoparticles ; Porosity ; Porous materials ; Supported anodic film ; Suspension conductivity ; Walls</subject><ispartof>Journal of colloid and interface science, 2014-01, Vol.413 (413), p.31-36</ispartof><rights>2013 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</citedby><cites>FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</cites><orcidid>0000-0002-5310-0481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2013.08.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28251530$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24183427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01162049$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fori, B.</creatorcontrib><creatorcontrib>Taberna, P.L.</creatorcontrib><creatorcontrib>Arurault, L.</creatorcontrib><creatorcontrib>Bonino, J.P.</creatorcontrib><title>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film.
The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.</description><subject>Aluminium</subject><subject>Aluminium alloy</subject><subject>Anodic</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Colloids</subject><subject>Electrochemistry</subject><subject>Electrophoretic deposition</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Impregnation</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Migration</subject><subject>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</subject><subject>Nanoparticles</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Supported anodic film</subject><subject>Suspension conductivity</subject><subject>Walls</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFksuO1DAQRSMEYpqBH2CBvEGCRYIfcRJLbEbDY5BaYgNry7ErM245drCdluZL-F0cddNLWFmuOnV1XddV9ZrghmDSfTg0B21TQzFhDR4aTMiTakew4HVPMHta7TCmpBa96K-qFykdcCE4F8-rK9qSgbW031W_P0HRsEdA1k9uBa8BhQnp4FywRjmU1rSATzb4UvRm1dkebX5EZo3W3yNwoHMMy0OIkK1Gdl4i3HuVt4EitIQY1oSUD6Z0J-vmoriUagaDCkIwx0i5dbberltvTDmqDC-rZ5NyCV6dz-vq55fPP27v6v33r99ub_a15qzNNTOGU8MmY7RmAFwQLejYk5a3qhsJ6Qyf-tHgQXcDFRzKDbpxGgFEP2Do2HX1_qT7oJxcop1VfJRBWXl3s5dbreyso7gVR1LYdyd2ieHXCinL2SYNzikP5ZGScMJazhjj_0fbVtCeFb8FpSdUx5BShOlig2C55SwPcstZbjlLPGyOytCbs_46zmAuI3-DLcDbM6CSVm6Kym8aF26gnHCGC_fxxEFZ8tFClEnb7RcYG0uy0gT7Lx9_AGP4yW0</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Fori, B.</creator><creator>Taberna, P.L.</creator><creator>Arurault, L.</creator><creator>Bonino, J.P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5310-0481</orcidid></search><sort><creationdate>20140101</creationdate><title>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</title><author>Fori, B. ; Taberna, P.L. ; Arurault, L. ; Bonino, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-3dd52d3fddcc3ee591c92b71454a6b116d5f7bd08c68295e5f7e6bfbee9780e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminium</topic><topic>Aluminium alloy</topic><topic>Anodic</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Colloids</topic><topic>Electrochemistry</topic><topic>Electrophoretic deposition</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Impregnation</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Migration</topic><topic>Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...)</topic><topic>Nanoparticles</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Supported anodic film</topic><topic>Suspension conductivity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fori, B.</creatorcontrib><creatorcontrib>Taberna, P.L.</creatorcontrib><creatorcontrib>Arurault, L.</creatorcontrib><creatorcontrib>Bonino, J.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fori, B.</au><au>Taberna, P.L.</au><au>Arurault, L.</au><au>Bonino, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>413</volume><issue>413</issue><spage>31</spage><epage>36</epage><pages>31-36</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><coden>JCISA5</coden><abstract>•Deposition kinetic depends on the suspension conductivity.•For low dispersion conductivities, deposition is controlled by particle diffusion.•When conductivities are high the forming deposit resistance governs the deposition kinetic.•For high conductivities, the electric field is focused on the anodic film.
The present paper studies the influence of suspension conductivity on the electrophoretic deposition (EPD) of nanoparticles inside a porous anodic aluminium oxide film. It is shown that an increase in the suspension’s conductivity enhances impregnation of the anodic film by the nanoparticles. Two mechanisms are seen to promote the migration of particles into the pores. Indeed an increase in the suspension conductivity leads on the one hand to a strengthening of the electric field in the anodic film and on the other hand to a thinning of the electric double layer on the pore walls. The results of our study confirm that colloidal suspension conductivity is a key parameter governing the electrophoretic impregnation depth.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>24183427</pmid><doi>10.1016/j.jcis.2013.08.011</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5310-0481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2014-01, Vol.413 (413), p.31-36 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01162049v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminium Aluminium alloy Anodic Chemical Sciences Chemistry Colloidal state and disperse state Colloids Electrochemistry Electrophoretic deposition Engineering Sciences Exact sciences and technology General and physical chemistry Impregnation Material chemistry Materials Migration Miscellaneous (electroosmosis, electrophoresis, electrochromism, electrocrystallization, ...) Nanoparticles Porosity Porous materials Supported anodic film Suspension conductivity Walls |
title | Decisive influence of colloidal suspension conductivity during electrophoretic impregnation of porous anodic film supported on 1050 aluminium substrate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decisive%20influence%20of%20colloidal%20suspension%20conductivity%20during%20electrophoretic%20impregnation%20of%20porous%20anodic%20film%20supported%20on%201050%20aluminium%20substrate&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Fori,%20B.&rft.date=2014-01-01&rft.volume=413&rft.issue=413&rft.spage=31&rft.epage=36&rft.pages=31-36&rft.issn=0021-9797&rft.eissn=1095-7103&rft.coden=JCISA5&rft_id=info:doi/10.1016/j.jcis.2013.08.011&rft_dat=%3Cproquest_hal_p%3E1449273591%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449273591&rft_id=info:pmid/24183427&rft_els_id=S0021979713007431&rfr_iscdi=true |