A classification study of kinematic gait trajectories in hip osteoarthritis
Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analy...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2014-12, Vol.55, p.42-48 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | Computers in biology and medicine |
container_volume | 55 |
creator | Laroche, D Tolambiya, A Morisset, C Maillefert, J.F French, R.M Ornetti, P Thomas, E |
description | Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two. |
doi_str_mv | 10.1016/j.compbiomed.2014.09.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01159582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482514002637</els_id><sourcerecordid>1635024207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhLyBLXOCQMP5KnAvStgKKWIkDcLYcx2GdJvFiO5X23-NoWyr1tCdL42c-3nkHIUygJECqj0Np_HRonZ9sV1IgvISmBEKfoQ2RdVOAYPw52gAQKLik4gK9inEAAA4MXqILKrgASuoN-r7FZtQxut4ZnZyfcUxLd8S-x7dutlOOGfxHu4RT0IM1yQdnI3Yz3rsD9jFZr0PaB5dcfI1e9HqM9s39e4l-f_n86_qm2P34-u16uytMRVkqmGFc1sY00Da2ZZp2Xd92VvCa6sZS03IuBaFVW0nDhO5MK2sQVcsZM72wFbtEH05193pUh-AmHY7Ka6dutju1xoAQ0QhJ70hm35_YQ_B_FxuTmlw0dhz1bP0SFal4DSBrdg7K8tI4hfoMlDZ5AEJYRt89QQe_hDnvZ6VEU0nOaKbkiTLBxxhs_18XAbVargb1aLlaLVfQZKFr6tv7Bku7_j0kPnicgasTYLMnd84GFY2zs7GdC9lQ1Xl3TpdPT4qY0c35ZsZbe7TxUZOKVIH6uZ7eenmEA9CK1ewfdj7UpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625968432</pqid></control><display><type>article</type><title>A classification study of kinematic gait trajectories in hip osteoarthritis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Laroche, D ; Tolambiya, A ; Morisset, C ; Maillefert, J.F ; French, R.M ; Ornetti, P ; Thomas, E</creator><creatorcontrib>Laroche, D ; Tolambiya, A ; Morisset, C ; Maillefert, J.F ; French, R.M ; Ornetti, P ; Thomas, E</creatorcontrib><description>Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2014.09.012</identifier><identifier>PMID: 25450217</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Arthritis ; Biomechanical Phenomena ; Classification ; Cognitive science ; Gait - physiology ; Gait analysis ; Humans ; Imaging, Three-Dimensional - methods ; Internal Medicine ; Kinematic trajectories ; Middle Aged ; Older people ; Osteoarthritis, Hip - physiopathology ; Other ; Pain ; Prostheses ; Questionnaires ; ROC Curve ; Studies ; Support Vector Machine ; Support vector machines ; Trajectory selection</subject><ispartof>Computers in biology and medicine, 2014-12, Vol.55, p.42-48</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</citedby><cites>FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</cites><orcidid>0000-0003-1599-4258 ; 0000-0002-1641-3593 ; 0000-0002-4959-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482514002637$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25450217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01159582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laroche, D</creatorcontrib><creatorcontrib>Tolambiya, A</creatorcontrib><creatorcontrib>Morisset, C</creatorcontrib><creatorcontrib>Maillefert, J.F</creatorcontrib><creatorcontrib>French, R.M</creatorcontrib><creatorcontrib>Ornetti, P</creatorcontrib><creatorcontrib>Thomas, E</creatorcontrib><title>A classification study of kinematic gait trajectories in hip osteoarthritis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Arthritis</subject><subject>Biomechanical Phenomena</subject><subject>Classification</subject><subject>Cognitive science</subject><subject>Gait - physiology</subject><subject>Gait analysis</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Internal Medicine</subject><subject>Kinematic trajectories</subject><subject>Middle Aged</subject><subject>Older people</subject><subject>Osteoarthritis, Hip - physiopathology</subject><subject>Other</subject><subject>Pain</subject><subject>Prostheses</subject><subject>Questionnaires</subject><subject>ROC Curve</subject><subject>Studies</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Trajectory selection</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EokvhLyBLXOCQMP5KnAvStgKKWIkDcLYcx2GdJvFiO5X23-NoWyr1tCdL42c-3nkHIUygJECqj0Np_HRonZ9sV1IgvISmBEKfoQ2RdVOAYPw52gAQKLik4gK9inEAAA4MXqILKrgASuoN-r7FZtQxut4ZnZyfcUxLd8S-x7dutlOOGfxHu4RT0IM1yQdnI3Yz3rsD9jFZr0PaB5dcfI1e9HqM9s39e4l-f_n86_qm2P34-u16uytMRVkqmGFc1sY00Da2ZZp2Xd92VvCa6sZS03IuBaFVW0nDhO5MK2sQVcsZM72wFbtEH05193pUh-AmHY7Ka6dutju1xoAQ0QhJ70hm35_YQ_B_FxuTmlw0dhz1bP0SFal4DSBrdg7K8tI4hfoMlDZ5AEJYRt89QQe_hDnvZ6VEU0nOaKbkiTLBxxhs_18XAbVargb1aLlaLVfQZKFr6tv7Bku7_j0kPnicgasTYLMnd84GFY2zs7GdC9lQ1Xl3TpdPT4qY0c35ZsZbe7TxUZOKVIH6uZ7eenmEA9CK1ewfdj7UpQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Laroche, D</creator><creator>Tolambiya, A</creator><creator>Morisset, C</creator><creator>Maillefert, J.F</creator><creator>French, R.M</creator><creator>Ornetti, P</creator><creator>Thomas, E</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1599-4258</orcidid><orcidid>https://orcid.org/0000-0002-1641-3593</orcidid><orcidid>https://orcid.org/0000-0002-4959-2348</orcidid></search><sort><creationdate>20141201</creationdate><title>A classification study of kinematic gait trajectories in hip osteoarthritis</title><author>Laroche, D ; Tolambiya, A ; Morisset, C ; Maillefert, J.F ; French, R.M ; Ornetti, P ; Thomas, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Arthritis</topic><topic>Biomechanical Phenomena</topic><topic>Classification</topic><topic>Cognitive science</topic><topic>Gait - physiology</topic><topic>Gait analysis</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Internal Medicine</topic><topic>Kinematic trajectories</topic><topic>Middle Aged</topic><topic>Older people</topic><topic>Osteoarthritis, Hip - physiopathology</topic><topic>Other</topic><topic>Pain</topic><topic>Prostheses</topic><topic>Questionnaires</topic><topic>ROC Curve</topic><topic>Studies</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Trajectory selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laroche, D</creatorcontrib><creatorcontrib>Tolambiya, A</creatorcontrib><creatorcontrib>Morisset, C</creatorcontrib><creatorcontrib>Maillefert, J.F</creatorcontrib><creatorcontrib>French, R.M</creatorcontrib><creatorcontrib>Ornetti, P</creatorcontrib><creatorcontrib>Thomas, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laroche, D</au><au>Tolambiya, A</au><au>Morisset, C</au><au>Maillefert, J.F</au><au>French, R.M</au><au>Ornetti, P</au><au>Thomas, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classification study of kinematic gait trajectories in hip osteoarthritis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>55</volume><spage>42</spage><epage>48</epage><pages>42-48</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25450217</pmid><doi>10.1016/j.compbiomed.2014.09.012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1599-4258</orcidid><orcidid>https://orcid.org/0000-0002-1641-3593</orcidid><orcidid>https://orcid.org/0000-0002-4959-2348</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2014-12, Vol.55, p.42-48 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01159582v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adult Aged Aged, 80 and over Arthritis Biomechanical Phenomena Classification Cognitive science Gait - physiology Gait analysis Humans Imaging, Three-Dimensional - methods Internal Medicine Kinematic trajectories Middle Aged Older people Osteoarthritis, Hip - physiopathology Other Pain Prostheses Questionnaires ROC Curve Studies Support Vector Machine Support vector machines Trajectory selection |
title | A classification study of kinematic gait trajectories in hip osteoarthritis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classification%20study%20of%20kinematic%20gait%20trajectories%20in%20hip%20osteoarthritis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Laroche,%20D&rft.date=2014-12-01&rft.volume=55&rft.spage=42&rft.epage=48&rft.pages=42-48&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2014.09.012&rft_dat=%3Cproquest_hal_p%3E1635024207%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625968432&rft_id=info:pmid/25450217&rft_els_id=S0010482514002637&rfr_iscdi=true |