A classification study of kinematic gait trajectories in hip osteoarthritis

Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2014-12, Vol.55, p.42-48
Hauptverfasser: Laroche, D, Tolambiya, A, Morisset, C, Maillefert, J.F, French, R.M, Ornetti, P, Thomas, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 42
container_title Computers in biology and medicine
container_volume 55
creator Laroche, D
Tolambiya, A
Morisset, C
Maillefert, J.F
French, R.M
Ornetti, P
Thomas, E
description Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.
doi_str_mv 10.1016/j.compbiomed.2014.09.012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01159582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482514002637</els_id><sourcerecordid>1635024207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhLyBLXOCQMP5KnAvStgKKWIkDcLYcx2GdJvFiO5X23-NoWyr1tCdL42c-3nkHIUygJECqj0Np_HRonZ9sV1IgvISmBEKfoQ2RdVOAYPw52gAQKLik4gK9inEAAA4MXqILKrgASuoN-r7FZtQxut4ZnZyfcUxLd8S-x7dutlOOGfxHu4RT0IM1yQdnI3Yz3rsD9jFZr0PaB5dcfI1e9HqM9s39e4l-f_n86_qm2P34-u16uytMRVkqmGFc1sY00Da2ZZp2Xd92VvCa6sZS03IuBaFVW0nDhO5MK2sQVcsZM72wFbtEH05193pUh-AmHY7Ka6dutju1xoAQ0QhJ70hm35_YQ_B_FxuTmlw0dhz1bP0SFal4DSBrdg7K8tI4hfoMlDZ5AEJYRt89QQe_hDnvZ6VEU0nOaKbkiTLBxxhs_18XAbVargb1aLlaLVfQZKFr6tv7Bku7_j0kPnicgasTYLMnd84GFY2zs7GdC9lQ1Xl3TpdPT4qY0c35ZsZbe7TxUZOKVIH6uZ7eenmEA9CK1ewfdj7UpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625968432</pqid></control><display><type>article</type><title>A classification study of kinematic gait trajectories in hip osteoarthritis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Laroche, D ; Tolambiya, A ; Morisset, C ; Maillefert, J.F ; French, R.M ; Ornetti, P ; Thomas, E</creator><creatorcontrib>Laroche, D ; Tolambiya, A ; Morisset, C ; Maillefert, J.F ; French, R.M ; Ornetti, P ; Thomas, E</creatorcontrib><description>Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2014.09.012</identifier><identifier>PMID: 25450217</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Arthritis ; Biomechanical Phenomena ; Classification ; Cognitive science ; Gait - physiology ; Gait analysis ; Humans ; Imaging, Three-Dimensional - methods ; Internal Medicine ; Kinematic trajectories ; Middle Aged ; Older people ; Osteoarthritis, Hip - physiopathology ; Other ; Pain ; Prostheses ; Questionnaires ; ROC Curve ; Studies ; Support Vector Machine ; Support vector machines ; Trajectory selection</subject><ispartof>Computers in biology and medicine, 2014-12, Vol.55, p.42-48</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</citedby><cites>FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</cites><orcidid>0000-0003-1599-4258 ; 0000-0002-1641-3593 ; 0000-0002-4959-2348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482514002637$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25450217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01159582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Laroche, D</creatorcontrib><creatorcontrib>Tolambiya, A</creatorcontrib><creatorcontrib>Morisset, C</creatorcontrib><creatorcontrib>Maillefert, J.F</creatorcontrib><creatorcontrib>French, R.M</creatorcontrib><creatorcontrib>Ornetti, P</creatorcontrib><creatorcontrib>Thomas, E</creatorcontrib><title>A classification study of kinematic gait trajectories in hip osteoarthritis</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Arthritis</subject><subject>Biomechanical Phenomena</subject><subject>Classification</subject><subject>Cognitive science</subject><subject>Gait - physiology</subject><subject>Gait analysis</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Internal Medicine</subject><subject>Kinematic trajectories</subject><subject>Middle Aged</subject><subject>Older people</subject><subject>Osteoarthritis, Hip - physiopathology</subject><subject>Other</subject><subject>Pain</subject><subject>Prostheses</subject><subject>Questionnaires</subject><subject>ROC Curve</subject><subject>Studies</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Trajectory selection</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EokvhLyBLXOCQMP5KnAvStgKKWIkDcLYcx2GdJvFiO5X23-NoWyr1tCdL42c-3nkHIUygJECqj0Np_HRonZ9sV1IgvISmBEKfoQ2RdVOAYPw52gAQKLik4gK9inEAAA4MXqILKrgASuoN-r7FZtQxut4ZnZyfcUxLd8S-x7dutlOOGfxHu4RT0IM1yQdnI3Yz3rsD9jFZr0PaB5dcfI1e9HqM9s39e4l-f_n86_qm2P34-u16uytMRVkqmGFc1sY00Da2ZZp2Xd92VvCa6sZS03IuBaFVW0nDhO5MK2sQVcsZM72wFbtEH05193pUh-AmHY7Ka6dutju1xoAQ0QhJ70hm35_YQ_B_FxuTmlw0dhz1bP0SFal4DSBrdg7K8tI4hfoMlDZ5AEJYRt89QQe_hDnvZ6VEU0nOaKbkiTLBxxhs_18XAbVargb1aLlaLVfQZKFr6tv7Bku7_j0kPnicgasTYLMnd84GFY2zs7GdC9lQ1Xl3TpdPT4qY0c35ZsZbe7TxUZOKVIH6uZ7eenmEA9CK1ewfdj7UpQ</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Laroche, D</creator><creator>Tolambiya, A</creator><creator>Morisset, C</creator><creator>Maillefert, J.F</creator><creator>French, R.M</creator><creator>Ornetti, P</creator><creator>Thomas, E</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1599-4258</orcidid><orcidid>https://orcid.org/0000-0002-1641-3593</orcidid><orcidid>https://orcid.org/0000-0002-4959-2348</orcidid></search><sort><creationdate>20141201</creationdate><title>A classification study of kinematic gait trajectories in hip osteoarthritis</title><author>Laroche, D ; Tolambiya, A ; Morisset, C ; Maillefert, J.F ; French, R.M ; Ornetti, P ; Thomas, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-3c3487cc90b9eb3a2ddfbde5472a9e2cb4485126b68c35adcb87056b433cf5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Arthritis</topic><topic>Biomechanical Phenomena</topic><topic>Classification</topic><topic>Cognitive science</topic><topic>Gait - physiology</topic><topic>Gait analysis</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Internal Medicine</topic><topic>Kinematic trajectories</topic><topic>Middle Aged</topic><topic>Older people</topic><topic>Osteoarthritis, Hip - physiopathology</topic><topic>Other</topic><topic>Pain</topic><topic>Prostheses</topic><topic>Questionnaires</topic><topic>ROC Curve</topic><topic>Studies</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Trajectory selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laroche, D</creatorcontrib><creatorcontrib>Tolambiya, A</creatorcontrib><creatorcontrib>Morisset, C</creatorcontrib><creatorcontrib>Maillefert, J.F</creatorcontrib><creatorcontrib>French, R.M</creatorcontrib><creatorcontrib>Ornetti, P</creatorcontrib><creatorcontrib>Thomas, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laroche, D</au><au>Tolambiya, A</au><au>Morisset, C</au><au>Maillefert, J.F</au><au>French, R.M</au><au>Ornetti, P</au><au>Thomas, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A classification study of kinematic gait trajectories in hip osteoarthritis</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>55</volume><spage>42</spage><epage>48</epage><pages>42-48</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract The clinical evaluation of patients in hip osteoarthritis is often done using patient questionnaires. While this provides important information it is also necessary to continue developing objective measures. In this work we further investigate the studies concerning the use of 3D gait analysis to attain this goal. The gait analysis was associated with machine learning methods in order to provide a direct measure of patient control gait discrimination. The applied machine learning method was the support vector machine (SVM). Applying the SVM on all the measured kinematic trajectories, we were able to classify individual patient and control gait cycles with a mean success rate of 88%. With the use of an ROC curve to establish the threshold number of cycles necessary for a subject to be identified as a patient, this allowed for an accuracy of higher than 90% for discriminating patient and control subjects. We then went on to determine the importance of each trajectory. By ranking the capacity of each trajectory for this discrimination, we provided a guide on their order of importance in evaluating patient severity. In order to be clinically relevant, any measure of patient deficit must be compared with clinically validated scores of functional disability. In the case of hip osteoarthritis (OA), the WOMAC scores are currently one of the most widely accepted clinical scores for quantifying OA severity. The kinematic trajectories that provided the best patient–control discrimination with the SVM were found to correlate well but imperfectly with the WOMAC scores, hence indicating the presence of complementary information in the two.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>25450217</pmid><doi>10.1016/j.compbiomed.2014.09.012</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1599-4258</orcidid><orcidid>https://orcid.org/0000-0002-1641-3593</orcidid><orcidid>https://orcid.org/0000-0002-4959-2348</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2014-12, Vol.55, p.42-48
issn 0010-4825
1879-0534
language eng
recordid cdi_hal_primary_oai_HAL_hal_01159582v1
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Aged
Aged, 80 and over
Arthritis
Biomechanical Phenomena
Classification
Cognitive science
Gait - physiology
Gait analysis
Humans
Imaging, Three-Dimensional - methods
Internal Medicine
Kinematic trajectories
Middle Aged
Older people
Osteoarthritis, Hip - physiopathology
Other
Pain
Prostheses
Questionnaires
ROC Curve
Studies
Support Vector Machine
Support vector machines
Trajectory selection
title A classification study of kinematic gait trajectories in hip osteoarthritis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20classification%20study%20of%20kinematic%20gait%20trajectories%20in%20hip%20osteoarthritis&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Laroche,%20D&rft.date=2014-12-01&rft.volume=55&rft.spage=42&rft.epage=48&rft.pages=42-48&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2014.09.012&rft_dat=%3Cproquest_hal_p%3E1635024207%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625968432&rft_id=info:pmid/25450217&rft_els_id=S0010482514002637&rfr_iscdi=true