Unifying Color and Texture Transfer for Predictive Appearance Manipulation

Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2015-07, Vol.34 (4), p.53-63
Hauptverfasser: Okura, Fumio, Vanhoey, Kenneth, Bousseau, Adrien, Efros, Alexei A., Drettakis, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 4
container_start_page 53
container_title Computer graphics forum
container_volume 34
creator Okura, Fumio
Vanhoey, Kenneth
Bousseau, Adrien
Efros, Alexei A.
Drettakis, George
description Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.
doi_str_mv 10.1111/cgf.12678
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01158180v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3758792581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi3USmxpD_0HkXqhh4Anjj9yXC2wFG2hh0X0ZjnOGExDEuwE2H9f06VUqoQvY80873zoJeQz0ANI79BeuwMohFQ7ZAalkLkSvHpHZhTSX1LOd8mHGG8ppaUUfEbOLjvvNr67zhZ924fMdE22xqdxCpitg-miw5C5VPgRsPF29A-YzYcBTapZzL6bzg9Ta0bfdx_Je2faiJ9e4h5ZnxyvF6f56mL5bTFf5ZZTpnKoWImSgipsbZlkTQWusUVZSlNbjmXJKql4YVgjhTCqRqwdd47WAAKVZXvk67btjWn1EPydCRvdG69P5yv9nKMAXIGiD5DY_S07hP5-wjjqOx8ttq3psJ-iBikVZbyCIqFf_kNv-yl06RANolKVKngl_w23oY8xoHvdAKh-NkAnA_QfAxJ7uGUffYubt0G9WJ78VeRbhY8jPr0qTPilhWSS66vzpS5KCkdn5z_1kv0G17WUaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698982597</pqid></control><display><type>article</type><title>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</title><source>EBSCO Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Okura, Fumio ; Vanhoey, Kenneth ; Bousseau, Adrien ; Efros, Alexei A. ; Drettakis, George</creator><creatorcontrib>Okura, Fumio ; Vanhoey, Kenneth ; Bousseau, Adrien ; Efros, Alexei A. ; Drettakis, George</creatorcontrib><description>Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12678</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; and texture ; Categories and Subject Descriptors (according to ACM CCS) ; Color ; Computer graphics ; Computer Science ; Computer Vision and Pattern Recognition ; Customization ; I.3.3 [Computer Graphics]: Picture/Image Generation ; I.3.7 [Computer Graphics]: Color ; I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture ; Leaves ; Mathematical models ; shading ; shadowing ; Studies ; Surface layer ; Texture ; Trees</subject><ispartof>Computer graphics forum, 2015-07, Vol.34 (4), p.53-63</ispartof><rights>2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2015 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</citedby><cites>FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</cites><orcidid>0000-0002-8003-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01158180$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Okura, Fumio</creatorcontrib><creatorcontrib>Vanhoey, Kenneth</creatorcontrib><creatorcontrib>Bousseau, Adrien</creatorcontrib><creatorcontrib>Efros, Alexei A.</creatorcontrib><creatorcontrib>Drettakis, George</creatorcontrib><title>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.</description><subject>Algorithms</subject><subject>and texture</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Color</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Customization</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation</subject><subject>I.3.7 [Computer Graphics]: Color</subject><subject>I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture</subject><subject>Leaves</subject><subject>Mathematical models</subject><subject>shading</subject><subject>shadowing</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Trees</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi3USmxpD_0HkXqhh4Anjj9yXC2wFG2hh0X0ZjnOGExDEuwE2H9f06VUqoQvY80873zoJeQz0ANI79BeuwMohFQ7ZAalkLkSvHpHZhTSX1LOd8mHGG8ppaUUfEbOLjvvNr67zhZ924fMdE22xqdxCpitg-miw5C5VPgRsPF29A-YzYcBTapZzL6bzg9Ta0bfdx_Je2faiJ9e4h5ZnxyvF6f56mL5bTFf5ZZTpnKoWImSgipsbZlkTQWusUVZSlNbjmXJKql4YVgjhTCqRqwdd47WAAKVZXvk67btjWn1EPydCRvdG69P5yv9nKMAXIGiD5DY_S07hP5-wjjqOx8ttq3psJ-iBikVZbyCIqFf_kNv-yl06RANolKVKngl_w23oY8xoHvdAKh-NkAnA_QfAxJ7uGUffYubt0G9WJ78VeRbhY8jPr0qTPilhWSS66vzpS5KCkdn5z_1kv0G17WUaw</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Okura, Fumio</creator><creator>Vanhoey, Kenneth</creator><creator>Bousseau, Adrien</creator><creator>Efros, Alexei A.</creator><creator>Drettakis, George</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid></search><sort><creationdate>201507</creationdate><title>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</title><author>Okura, Fumio ; Vanhoey, Kenneth ; Bousseau, Adrien ; Efros, Alexei A. ; Drettakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>and texture</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Color</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Customization</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation</topic><topic>I.3.7 [Computer Graphics]: Color</topic><topic>I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture</topic><topic>Leaves</topic><topic>Mathematical models</topic><topic>shading</topic><topic>shadowing</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okura, Fumio</creatorcontrib><creatorcontrib>Vanhoey, Kenneth</creatorcontrib><creatorcontrib>Bousseau, Adrien</creatorcontrib><creatorcontrib>Efros, Alexei A.</creatorcontrib><creatorcontrib>Drettakis, George</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okura, Fumio</au><au>Vanhoey, Kenneth</au><au>Bousseau, Adrien</au><au>Efros, Alexei A.</au><au>Drettakis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2015-07</date><risdate>2015</risdate><volume>34</volume><issue>4</issue><spage>53</spage><epage>63</epage><pages>53-63</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12678</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2015-07, Vol.34 (4), p.53-63
issn 0167-7055
1467-8659
language eng
recordid cdi_hal_primary_oai_HAL_hal_01158180v1
source EBSCO Business Source Complete; Access via Wiley Online Library
subjects Algorithms
and texture
Categories and Subject Descriptors (according to ACM CCS)
Color
Computer graphics
Computer Science
Computer Vision and Pattern Recognition
Customization
I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Color
I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture
Leaves
Mathematical models
shading
shadowing
Studies
Surface layer
Texture
Trees
title Unifying Color and Texture Transfer for Predictive Appearance Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unifying%20Color%20and%20Texture%20Transfer%20for%20Predictive%20Appearance%20Manipulation&rft.jtitle=Computer%20graphics%20forum&rft.au=Okura,%20Fumio&rft.date=2015-07&rft.volume=34&rft.issue=4&rft.spage=53&rft.epage=63&rft.pages=53-63&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12678&rft_dat=%3Cproquest_hal_p%3E3758792581%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698982597&rft_id=info:pmid/&rfr_iscdi=true