Unifying Color and Texture Transfer for Predictive Appearance Manipulation
Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “su...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2015-07, Vol.34 (4), p.53-63 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 4 |
container_start_page | 53 |
container_title | Computer graphics forum |
container_volume | 34 |
creator | Okura, Fumio Vanhoey, Kenneth Bousseau, Adrien Efros, Alexei A. Drettakis, George |
description | Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding. |
doi_str_mv | 10.1111/cgf.12678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01158180v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3758792581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhi3USmxpD_0HkXqhh4Anjj9yXC2wFG2hh0X0ZjnOGExDEuwE2H9f06VUqoQvY80873zoJeQz0ANI79BeuwMohFQ7ZAalkLkSvHpHZhTSX1LOd8mHGG8ppaUUfEbOLjvvNr67zhZ924fMdE22xqdxCpitg-miw5C5VPgRsPF29A-YzYcBTapZzL6bzg9Ta0bfdx_Je2faiJ9e4h5ZnxyvF6f56mL5bTFf5ZZTpnKoWImSgipsbZlkTQWusUVZSlNbjmXJKql4YVgjhTCqRqwdd47WAAKVZXvk67btjWn1EPydCRvdG69P5yv9nKMAXIGiD5DY_S07hP5-wjjqOx8ttq3psJ-iBikVZbyCIqFf_kNv-yl06RANolKVKngl_w23oY8xoHvdAKh-NkAnA_QfAxJ7uGUffYubt0G9WJ78VeRbhY8jPr0qTPilhWSS66vzpS5KCkdn5z_1kv0G17WUaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698982597</pqid></control><display><type>article</type><title>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</title><source>EBSCO Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Okura, Fumio ; Vanhoey, Kenneth ; Bousseau, Adrien ; Efros, Alexei A. ; Drettakis, George</creator><creatorcontrib>Okura, Fumio ; Vanhoey, Kenneth ; Bousseau, Adrien ; Efros, Alexei A. ; Drettakis, George</creatorcontrib><description>Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12678</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; and texture ; Categories and Subject Descriptors (according to ACM CCS) ; Color ; Computer graphics ; Computer Science ; Computer Vision and Pattern Recognition ; Customization ; I.3.3 [Computer Graphics]: Picture/Image Generation ; I.3.7 [Computer Graphics]: Color ; I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture ; Leaves ; Mathematical models ; shading ; shadowing ; Studies ; Surface layer ; Texture ; Trees</subject><ispartof>Computer graphics forum, 2015-07, Vol.34 (4), p.53-63</ispartof><rights>2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2015 The Eurographics Association and John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</citedby><cites>FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</cites><orcidid>0000-0002-8003-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12678$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12678$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01158180$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Okura, Fumio</creatorcontrib><creatorcontrib>Vanhoey, Kenneth</creatorcontrib><creatorcontrib>Bousseau, Adrien</creatorcontrib><creatorcontrib>Efros, Alexei A.</creatorcontrib><creatorcontrib>Drettakis, George</creatorcontrib><title>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.</description><subject>Algorithms</subject><subject>and texture</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Color</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Customization</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation</subject><subject>I.3.7 [Computer Graphics]: Color</subject><subject>I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture</subject><subject>Leaves</subject><subject>Mathematical models</subject><subject>shading</subject><subject>shadowing</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><subject>Trees</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kU1P3DAQhi3USmxpD_0HkXqhh4Anjj9yXC2wFG2hh0X0ZjnOGExDEuwE2H9f06VUqoQvY80873zoJeQz0ANI79BeuwMohFQ7ZAalkLkSvHpHZhTSX1LOd8mHGG8ppaUUfEbOLjvvNr67zhZ924fMdE22xqdxCpitg-miw5C5VPgRsPF29A-YzYcBTapZzL6bzg9Ta0bfdx_Je2faiJ9e4h5ZnxyvF6f56mL5bTFf5ZZTpnKoWImSgipsbZlkTQWusUVZSlNbjmXJKql4YVgjhTCqRqwdd47WAAKVZXvk67btjWn1EPydCRvdG69P5yv9nKMAXIGiD5DY_S07hP5-wjjqOx8ttq3psJ-iBikVZbyCIqFf_kNv-yl06RANolKVKngl_w23oY8xoHvdAKh-NkAnA_QfAxJ7uGUffYubt0G9WJ78VeRbhY8jPr0qTPilhWSS66vzpS5KCkdn5z_1kv0G17WUaw</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Okura, Fumio</creator><creator>Vanhoey, Kenneth</creator><creator>Bousseau, Adrien</creator><creator>Efros, Alexei A.</creator><creator>Drettakis, George</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid></search><sort><creationdate>201507</creationdate><title>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</title><author>Okura, Fumio ; Vanhoey, Kenneth ; Bousseau, Adrien ; Efros, Alexei A. ; Drettakis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5038-1934e70182cbc373d91fdc2447abc5e44397852a3d766a8beebf5ff0b116e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>and texture</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Color</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Customization</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation</topic><topic>I.3.7 [Computer Graphics]: Color</topic><topic>I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture</topic><topic>Leaves</topic><topic>Mathematical models</topic><topic>shading</topic><topic>shadowing</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okura, Fumio</creatorcontrib><creatorcontrib>Vanhoey, Kenneth</creatorcontrib><creatorcontrib>Bousseau, Adrien</creatorcontrib><creatorcontrib>Efros, Alexei A.</creatorcontrib><creatorcontrib>Drettakis, George</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okura, Fumio</au><au>Vanhoey, Kenneth</au><au>Bousseau, Adrien</au><au>Efros, Alexei A.</au><au>Drettakis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unifying Color and Texture Transfer for Predictive Appearance Manipulation</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2015-07</date><risdate>2015</risdate><volume>34</volume><issue>4</issue><spage>53</spage><epage>63</epage><pages>53-63</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Recent color transfer methods use local information to learn the transformation from a source to an exemplar image, and then transfer this appearance change to a target image. These solutions achieve very successful results for general mood changes, e.g., changing the appearance of an image from “sunny” to “overcast”. However, such methods have a hard time creating new image content, such as leaves on a bare tree. Texture transfer, on the other hand, can synthesize such content but tends to destroy image structure. We propose the first algorithm that unifies color and texture transfer, outperforming both by leveraging their respective strengths. A key novelty in our approach resides in teasing apart appearance changes that can be modeled simply as changes in color versus those that require new image content to be generated. Our method starts with an analysis phase which evaluates the success of color transfer by comparing the exemplar with the source. This analysis then drives a selective, iterative texture transfer algorithm that simultaneously predicts the success of color transfer on the target and synthesizes new content where needed. We demonstrate our unified algorithm by transferring large temporal changes between photographs, such as change of season – e.g., leaves on bare trees or piles of snow on a street – and flooding.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12678</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8003-9575</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2015-07, Vol.34 (4), p.53-63 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01158180v1 |
source | EBSCO Business Source Complete; Access via Wiley Online Library |
subjects | Algorithms and texture Categories and Subject Descriptors (according to ACM CCS) Color Computer graphics Computer Science Computer Vision and Pattern Recognition Customization I.3.3 [Computer Graphics]: Picture/Image Generation I.3.7 [Computer Graphics]: Color I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture Leaves Mathematical models shading shadowing Studies Surface layer Texture Trees |
title | Unifying Color and Texture Transfer for Predictive Appearance Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unifying%20Color%20and%20Texture%20Transfer%20for%20Predictive%20Appearance%20Manipulation&rft.jtitle=Computer%20graphics%20forum&rft.au=Okura,%20Fumio&rft.date=2015-07&rft.volume=34&rft.issue=4&rft.spage=53&rft.epage=63&rft.pages=53-63&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12678&rft_dat=%3Cproquest_hal_p%3E3758792581%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698982597&rft_id=info:pmid/&rfr_iscdi=true |