Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages

Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-04, Vol.7 (16), p.7323-7330
Hauptverfasser: Veronesi, G, Aude-Garcia, C, Kieffer, I, Gallon, T, Delangle, P, Herlin-Boime, N, Rabilloud, T, Carrière, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7330
container_issue 16
container_start_page 7323
container_title Nanoscale
container_volume 7
creator Veronesi, G
Aude-Garcia, C
Kieffer, I
Gallon, T
Delangle, P
Herlin-Boime, N
Rabilloud, T
Carrière, M
description Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag(+) ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag(+) release than acute exposure; Ag-S bond lengths are 2.41 ± 0.03 Å and 2.38 ± 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag(+). The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.
doi_str_mv 10.1039/c5nr00353a
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01157525v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25824974</sourcerecordid><originalsourceid>FETCH-LOGICAL-h245t-11377fb2b991256d04fd3fcc141a8209dc6aba4fc5f85f6fe72b2c7fbab8ccd13</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK1e_AGyV5HofubjWEq1QsGDeg6T_WhXkk3YTUv775vS2tPMvDzPMAxCj5S8UsKLNyV9IIRLDldozIggCecZu770qRihuxj_CEkLnvJbNGIyZ6LIxBjt57uujZtgEm0647XxPZ6uXnAwtYFosA1tg6OrtyZgD77tIPRO1SZi8Bq7PmLVNl1tdtC71mPnB_ubDUY_IMPUBddA2ONmE5w3uAEV2m4NKxPv0Y2FOpqHc52g3_f5z2yRLL8-PmfTZbJmQvYJpTzLbMWqoqBMppoIq7lVigoKOSOFVilUIKySNpc2tSZjFVODAVWulKZ8gp5Pe9dQl-dzyhZcuZguy2NGKJWZZHJ7ZJ9ObLepGqMv-P-_-AHwPm6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Veronesi, G ; Aude-Garcia, C ; Kieffer, I ; Gallon, T ; Delangle, P ; Herlin-Boime, N ; Rabilloud, T ; Carrière, M</creator><creatorcontrib>Veronesi, G ; Aude-Garcia, C ; Kieffer, I ; Gallon, T ; Delangle, P ; Herlin-Boime, N ; Rabilloud, T ; Carrière, M</creatorcontrib><description>Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag(+) ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag(+) release than acute exposure; Ag-S bond lengths are 2.41 ± 0.03 Å and 2.38 ± 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag(+). The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c5nr00353a</identifier><identifier>PMID: 25824974</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Cell Survival - drug effects ; Cells, Cultured ; Chemical Sciences ; Glutathione - chemistry ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; Material chemistry ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - toxicity ; Mice ; Microscopy, Electron, Transmission ; Silver - chemistry ; Silver Compounds - chemistry ; X-Ray Absorption Spectroscopy</subject><ispartof>Nanoscale, 2015-04, Vol.7 (16), p.7323-7330</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4372-5218 ; 0000-0001-8446-6462 ; 0000-0001-9228-6082 ; 0000-0001-5406-6046 ; 0000-0002-8546-9080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25824974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01157525$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Veronesi, G</creatorcontrib><creatorcontrib>Aude-Garcia, C</creatorcontrib><creatorcontrib>Kieffer, I</creatorcontrib><creatorcontrib>Gallon, T</creatorcontrib><creatorcontrib>Delangle, P</creatorcontrib><creatorcontrib>Herlin-Boime, N</creatorcontrib><creatorcontrib>Rabilloud, T</creatorcontrib><creatorcontrib>Carrière, M</creatorcontrib><title>Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag(+) ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag(+) release than acute exposure; Ag-S bond lengths are 2.41 ± 0.03 Å and 2.38 ± 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag(+). The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.</description><subject>Animals</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Chemical Sciences</subject><subject>Glutathione - chemistry</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Material chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - toxicity</subject><subject>Mice</subject><subject>Microscopy, Electron, Transmission</subject><subject>Silver - chemistry</subject><subject>Silver Compounds - chemistry</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1Lw0AQhhdRbK1e_AGyV5HofubjWEq1QsGDeg6T_WhXkk3YTUv775vS2tPMvDzPMAxCj5S8UsKLNyV9IIRLDldozIggCecZu770qRihuxj_CEkLnvJbNGIyZ6LIxBjt57uujZtgEm0647XxPZ6uXnAwtYFosA1tg6OrtyZgD77tIPRO1SZi8Bq7PmLVNl1tdtC71mPnB_ubDUY_IMPUBddA2ONmE5w3uAEV2m4NKxPv0Y2FOpqHc52g3_f5z2yRLL8-PmfTZbJmQvYJpTzLbMWqoqBMppoIq7lVigoKOSOFVilUIKySNpc2tSZjFVODAVWulKZ8gp5Pe9dQl-dzyhZcuZguy2NGKJWZZHJ7ZJ9ObLepGqMv-P-_-AHwPm6Y</recordid><startdate>20150428</startdate><enddate>20150428</enddate><creator>Veronesi, G</creator><creator>Aude-Garcia, C</creator><creator>Kieffer, I</creator><creator>Gallon, T</creator><creator>Delangle, P</creator><creator>Herlin-Boime, N</creator><creator>Rabilloud, T</creator><creator>Carrière, M</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4372-5218</orcidid><orcidid>https://orcid.org/0000-0001-8446-6462</orcidid><orcidid>https://orcid.org/0000-0001-9228-6082</orcidid><orcidid>https://orcid.org/0000-0001-5406-6046</orcidid><orcidid>https://orcid.org/0000-0002-8546-9080</orcidid></search><sort><creationdate>20150428</creationdate><title>Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages</title><author>Veronesi, G ; Aude-Garcia, C ; Kieffer, I ; Gallon, T ; Delangle, P ; Herlin-Boime, N ; Rabilloud, T ; Carrière, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h245t-11377fb2b991256d04fd3fcc141a8209dc6aba4fc5f85f6fe72b2c7fbab8ccd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Chemical Sciences</topic><topic>Glutathione - chemistry</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Material chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - toxicity</topic><topic>Mice</topic><topic>Microscopy, Electron, Transmission</topic><topic>Silver - chemistry</topic><topic>Silver Compounds - chemistry</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veronesi, G</creatorcontrib><creatorcontrib>Aude-Garcia, C</creatorcontrib><creatorcontrib>Kieffer, I</creatorcontrib><creatorcontrib>Gallon, T</creatorcontrib><creatorcontrib>Delangle, P</creatorcontrib><creatorcontrib>Herlin-Boime, N</creatorcontrib><creatorcontrib>Rabilloud, T</creatorcontrib><creatorcontrib>Carrière, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veronesi, G</au><au>Aude-Garcia, C</au><au>Kieffer, I</au><au>Gallon, T</au><au>Delangle, P</au><au>Herlin-Boime, N</au><au>Rabilloud, T</au><au>Carrière, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2015-04-28</date><risdate>2015</risdate><volume>7</volume><issue>16</issue><spage>7323</spage><epage>7330</epage><pages>7323-7330</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Silver nanoparticle (AgNP) toxicity is related to their dissolution in biological environments and to the binding of the released Ag(+) ions in cellulo; the chemical environment of recombined Ag(+) ions is responsible for their toxicological outcome, moreover it is indicative of the cellular response to AgNP exposure, and can therefore shed light on the mechanisms governing AgNP toxicity. This study probes the chemistry of Ag species in primary murine macrophages exposed to AgNPs by making use of X-ray Absorption Fine Structure spectroscopy under cryogenic conditions: the linear combination analysis of the near-edge region of the spectra provides the fraction of Ag(+) ions released from the AgNPs under a given exposure condition and highlights their complexation with thiolate groups; the ab initio modelling of the extended spectra allows measuring the Ag-S bond length in cellulo. Dissolution rates depend on the exposure scenario, chronicity leading to higher Ag(+) release than acute exposure; Ag-S bond lengths are 2.41 ± 0.03 Å and 2.38 ± 0.01 Å in acute and chronic exposure respectively, compatible with digonal AgS2 coordination. Glutathione is identified as the most likely putative ligand for Ag(+). The proposed method offers a scope for the investigation of metallic nanoparticle dissolution and recombination in cellular models.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>25824974</pmid><doi>10.1039/c5nr00353a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4372-5218</orcidid><orcidid>https://orcid.org/0000-0001-8446-6462</orcidid><orcidid>https://orcid.org/0000-0001-9228-6082</orcidid><orcidid>https://orcid.org/0000-0001-5406-6046</orcidid><orcidid>https://orcid.org/0000-0002-8546-9080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2015-04, Vol.7 (16), p.7323-7330
issn 2040-3364
2040-3372
language eng
recordid cdi_hal_primary_oai_HAL_hal_01157525v1
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Animals
Cell Survival - drug effects
Cells, Cultured
Chemical Sciences
Glutathione - chemistry
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
Material chemistry
Metal Nanoparticles - chemistry
Metal Nanoparticles - toxicity
Mice
Microscopy, Electron, Transmission
Silver - chemistry
Silver Compounds - chemistry
X-Ray Absorption Spectroscopy
title Exposure-dependent Ag+ release from silver nanoparticles and its complexation in AgS2 sites in primary murine macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exposure-dependent%20Ag+%20release%20from%20silver%20nanoparticles%20and%20its%20complexation%20in%20AgS2%20sites%20in%20primary%20murine%20macrophages&rft.jtitle=Nanoscale&rft.au=Veronesi,%20G&rft.date=2015-04-28&rft.volume=7&rft.issue=16&rft.spage=7323&rft.epage=7330&rft.pages=7323-7330&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c5nr00353a&rft_dat=%3Cpubmed_hal_p%3E25824974%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25824974&rfr_iscdi=true