Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning Electrochemical Microscopy

Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2014-01, Vol.86 (1), p.498-505
Hauptverfasser: Abucayon, Erwin, Ke, Neng, Cornut, Renaud, Patelunas, Anthony, Miller, Douglas, Nishiguchi, Michele K, Zoski, Cynthia G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 1
container_start_page 498
container_title Analytical chemistry (Washington)
container_volume 86
creator Abucayon, Erwin
Ke, Neng
Cornut, Renaud
Patelunas, Anthony
Miller, Douglas
Nishiguchi, Michele K
Zoski, Cynthia G
description Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 106 molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.
doi_str_mv 10.1021/ac402475m
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01156579v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505335826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-6f5f3c1dcaf205584d6595ae0bf4b65406fee647080aa609f3046756d5a051713</originalsourceid><addsrcrecordid>eNqF0s2O0zAQB_AIgdjuwoEXQJYQ0nIIjL-TY7csdKUiEHTP0dRxWq-SuNhJRZ6DFyZRl4LgsBfbsn6a0fw1SfKCwlsKjL5DI4AJLZtHyYxKBqnKMvY4mQEAT5kGOEvOY7wDoBSoepqcMcFZxgWbJT9v2oONndti59otWWCHNUZL5qZzB9cNZL0Lvt_uyHIog9_alnyxwf9wpSXvrfHN3kfXOd-SzUCu0HQ2OCRXzleubiJxLflqsSZr11hyG6cO3wy27fS4rq3pgjc72zgzmk_OBB-N3w_PkicV1tE-v78vktsP1-vFMl19_nizmK9SFIJ3qapkxQ0tDVYMpMxEqWQu0cKmEhslBajKWiU0ZICoIK84CKWlKiWCpJryi-TNse4O62IfXINhKDy6YjlfFdPfmJdUUueHyV4e7T747_2YWNG4aGxdY2t9Hwuqcsa5ZuPxIJUgOZcZUw9TkYNmXOUw0lf_0Dvfh3bMZ1RaS82FZH9GmrKMwVanuSgU064Up10Z7cv7iv2mseVJ_l6OEbw-AjTxr27_FfoFchTEFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477573452</pqid></control><display><type>article</type><title>Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning Electrochemical Microscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Abucayon, Erwin ; Ke, Neng ; Cornut, Renaud ; Patelunas, Anthony ; Miller, Douglas ; Nishiguchi, Michele K ; Zoski, Cynthia G</creator><creatorcontrib>Abucayon, Erwin ; Ke, Neng ; Cornut, Renaud ; Patelunas, Anthony ; Miller, Douglas ; Nishiguchi, Michele K ; Zoski, Cynthia G</creatorcontrib><description>Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 106 molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac402475m</identifier><identifier>PMID: 24328342</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aliivibrio fischeri - chemistry ; Aliivibrio fischeri - enzymology ; Bacteria ; Biofilms ; Catalase ; Catalase - analysis ; Catalase - metabolism ; Chemical Sciences ; Computer Systems ; Decomposition ; Enzyme Activation - physiology ; Hydrogen peroxide ; Hydrogen Peroxide - chemistry ; Hydrogen Peroxide - metabolism ; Material chemistry ; Microscopy ; Microscopy, Electrochemical, Scanning - methods ; Oxidative stress ; Real time ; Scanning ; Scanning electron microscopy ; Vibrio fischeri</subject><ispartof>Analytical chemistry (Washington), 2014-01, Vol.86 (1), p.498-505</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 7, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-6f5f3c1dcaf205584d6595ae0bf4b65406fee647080aa609f3046756d5a051713</citedby><cites>FETCH-LOGICAL-a443t-6f5f3c1dcaf205584d6595ae0bf4b65406fee647080aa609f3046756d5a051713</cites><orcidid>0000-0002-6156-5238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac402475m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac402475m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24328342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01156579$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abucayon, Erwin</creatorcontrib><creatorcontrib>Ke, Neng</creatorcontrib><creatorcontrib>Cornut, Renaud</creatorcontrib><creatorcontrib>Patelunas, Anthony</creatorcontrib><creatorcontrib>Miller, Douglas</creatorcontrib><creatorcontrib>Nishiguchi, Michele K</creatorcontrib><creatorcontrib>Zoski, Cynthia G</creatorcontrib><title>Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning Electrochemical Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 106 molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.</description><subject>Aliivibrio fischeri - chemistry</subject><subject>Aliivibrio fischeri - enzymology</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Catalase</subject><subject>Catalase - analysis</subject><subject>Catalase - metabolism</subject><subject>Chemical Sciences</subject><subject>Computer Systems</subject><subject>Decomposition</subject><subject>Enzyme Activation - physiology</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Material chemistry</subject><subject>Microscopy</subject><subject>Microscopy, Electrochemical, Scanning - methods</subject><subject>Oxidative stress</subject><subject>Real time</subject><subject>Scanning</subject><subject>Scanning electron microscopy</subject><subject>Vibrio fischeri</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0s2O0zAQB_AIgdjuwoEXQJYQ0nIIjL-TY7csdKUiEHTP0dRxWq-SuNhJRZ6DFyZRl4LgsBfbsn6a0fw1SfKCwlsKjL5DI4AJLZtHyYxKBqnKMvY4mQEAT5kGOEvOY7wDoBSoepqcMcFZxgWbJT9v2oONndti59otWWCHNUZL5qZzB9cNZL0Lvt_uyHIog9_alnyxwf9wpSXvrfHN3kfXOd-SzUCu0HQ2OCRXzleubiJxLflqsSZr11hyG6cO3wy27fS4rq3pgjc72zgzmk_OBB-N3w_PkicV1tE-v78vktsP1-vFMl19_nizmK9SFIJ3qapkxQ0tDVYMpMxEqWQu0cKmEhslBajKWiU0ZICoIK84CKWlKiWCpJryi-TNse4O62IfXINhKDy6YjlfFdPfmJdUUueHyV4e7T747_2YWNG4aGxdY2t9Hwuqcsa5ZuPxIJUgOZcZUw9TkYNmXOUw0lf_0Dvfh3bMZ1RaS82FZH9GmrKMwVanuSgU064Up10Z7cv7iv2mseVJ_l6OEbw-AjTxr27_FfoFchTEFA</recordid><startdate>20140107</startdate><enddate>20140107</enddate><creator>Abucayon, Erwin</creator><creator>Ke, Neng</creator><creator>Cornut, Renaud</creator><creator>Patelunas, Anthony</creator><creator>Miller, Douglas</creator><creator>Nishiguchi, Michele K</creator><creator>Zoski, Cynthia G</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6156-5238</orcidid></search><sort><creationdate>20140107</creationdate><title>Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning Electrochemical Microscopy</title><author>Abucayon, Erwin ; Ke, Neng ; Cornut, Renaud ; Patelunas, Anthony ; Miller, Douglas ; Nishiguchi, Michele K ; Zoski, Cynthia G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-6f5f3c1dcaf205584d6595ae0bf4b65406fee647080aa609f3046756d5a051713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aliivibrio fischeri - chemistry</topic><topic>Aliivibrio fischeri - enzymology</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Catalase</topic><topic>Catalase - analysis</topic><topic>Catalase - metabolism</topic><topic>Chemical Sciences</topic><topic>Computer Systems</topic><topic>Decomposition</topic><topic>Enzyme Activation - physiology</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Material chemistry</topic><topic>Microscopy</topic><topic>Microscopy, Electrochemical, Scanning - methods</topic><topic>Oxidative stress</topic><topic>Real time</topic><topic>Scanning</topic><topic>Scanning electron microscopy</topic><topic>Vibrio fischeri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abucayon, Erwin</creatorcontrib><creatorcontrib>Ke, Neng</creatorcontrib><creatorcontrib>Cornut, Renaud</creatorcontrib><creatorcontrib>Patelunas, Anthony</creatorcontrib><creatorcontrib>Miller, Douglas</creatorcontrib><creatorcontrib>Nishiguchi, Michele K</creatorcontrib><creatorcontrib>Zoski, Cynthia G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abucayon, Erwin</au><au>Ke, Neng</au><au>Cornut, Renaud</au><au>Patelunas, Anthony</au><au>Miller, Douglas</au><au>Nishiguchi, Michele K</au><au>Zoski, Cynthia G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning Electrochemical Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2014-01-07</date><risdate>2014</risdate><volume>86</volume><issue>1</issue><spage>498</spage><epage>505</epage><pages>498-505</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Catalase activity through hydrogen peroxide decomposition in a 1 mM bulk solution above Vibrio fischeri (γ-Protebacteria-Vibrionaceae) bacterial biofilms of either symbiotic or free-living strains was studied in real time by scanning electrochemical microscopy (SECM). The catalase activity, in units of micromoles hydrogen peroxide decomposed per minute over a period of 348 s, was found to vary with incubation time of each biofilm in correlation with the corresponding growth curve of bacteria in liquid culture. Average catalase activity for the same incubation times ranging from 1 to 12 h was found to be 0.28 ± 0.07 μmol H2O2/min for the symbiotic biofilms and 0.31 ± 0.07 μmol H2O2/min for the free-living biofilms, suggesting similar catalase activity. Calculations based on Comsol Multiphysics simulations in fitting experimental biofilm data indicated that approximately (3 ± 1) × 106 molecules of hydrogen peroxide were decomposed by a single bacterium per second, signifying the presence of a highly active catalase. A 2-fold enhancement in catalase activity was found for both free-living and symbiotic biofilms in response to external hydrogen peroxide concentrations as low as 1 nM in the growth media, implying a similar mechanism in responding to oxidative stress.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24328342</pmid><doi>10.1021/ac402475m</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6156-5238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2014-01, Vol.86 (1), p.498-505
issn 0003-2700
1520-6882
language eng
recordid cdi_hal_primary_oai_HAL_hal_01156579v1
source MEDLINE; American Chemical Society Journals
subjects Aliivibrio fischeri - chemistry
Aliivibrio fischeri - enzymology
Bacteria
Biofilms
Catalase
Catalase - analysis
Catalase - metabolism
Chemical Sciences
Computer Systems
Decomposition
Enzyme Activation - physiology
Hydrogen peroxide
Hydrogen Peroxide - chemistry
Hydrogen Peroxide - metabolism
Material chemistry
Microscopy
Microscopy, Electrochemical, Scanning - methods
Oxidative stress
Real time
Scanning
Scanning electron microscopy
Vibrio fischeri
title Investigating Catalase Activity Through Hydrogen Peroxide Decomposition by Bacteria Biofilms in Real Time Using Scanning Electrochemical Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Catalase%20Activity%20Through%20Hydrogen%20Peroxide%20Decomposition%20by%20Bacteria%20Biofilms%20in%20Real%20Time%20Using%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Abucayon,%20Erwin&rft.date=2014-01-07&rft.volume=86&rft.issue=1&rft.spage=498&rft.epage=505&rft.pages=498-505&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac402475m&rft_dat=%3Cproquest_hal_p%3E1505335826%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477573452&rft_id=info:pmid/24328342&rfr_iscdi=true