Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction

Identifying the set of genes differentially expressed along time is an important task in two-sample time course experiments. Furthermore, estimating at which time periods the differential expression is present can provide additional insight into temporal gene functions. The current differential dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2015-03, Vol.31 (5), p.728-735
Hauptverfasser: Heinonen, Markus, Guipaud, Olivier, Milliat, Fabien, Buard, Valérie, Micheau, Béatrice, Tarlet, Georges, Benderitter, Marc, Zehraoui, Farida, d'Alché-Buc, Florence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735
container_issue 5
container_start_page 728
container_title Bioinformatics
container_volume 31
creator Heinonen, Markus
Guipaud, Olivier
Milliat, Fabien
Buard, Valérie
Micheau, Béatrice
Tarlet, Georges
Benderitter, Marc
Zehraoui, Farida
d'Alché-Buc, Florence
description Identifying the set of genes differentially expressed along time is an important task in two-sample time course experiments. Furthermore, estimating at which time periods the differential expression is present can provide additional insight into temporal gene functions. The current differential detection methods are designed to detect difference along observation time intervals or on single measurement points, warranting dense measurements along time to characterize the full temporal differential expression patterns. We propose a novel Bayesian likelihood ratio test to estimate the differential expression time periods. Applying the ratio test to systems of genes provides the temporal response timings and durations of gene expression to a biological condition. We introduce a novel non-stationary Gaussian process as the underlying expression model, with major improvements on model fitness on perturbation and stress experiments. The method is robust to uneven or sparse measurements along time. We assess the performance of the method on realistically simulated dataset and compare against state-of-the-art methods. We additionally apply the method to the analysis of primary human endothelial cells under an ionizing radiation stress to study the transcriptional perturbations over 283 measured genes in an attempt to better understand the role of endothelium in both normal and cancer tissues during radiotherapy. As a result, using the cascade of differential expression periods, domain literature and gene enrichment analysis, we gain insights into the dynamic response of endothelial cells to irradiation. R package 'nsgp' is available at www.ibisc.fr/en/logiciels_arobas.
doi_str_mv 10.1093/bioinformatics/btu699
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01154010v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701475511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-a852562df996f3de9e147b4ad06249b934ef6fc4a7ca7eb00c8b0256e04b239f3</originalsourceid><addsrcrecordid>eNqNUk1vFSEUJUZjP_QnaFjq4lkYBhjcNVVbk5e40TVh4NJiZoYRGGP_ir9WyGtf4q4ruPeec-65yUHoDSUfKFHsYgwxLD6m2ZRg88VYNqHUM3RKmZC7fqD0-fFP2Ak6y_knIYQTLl6ik44zzqUip-jvJyhgS1hucQkz4BVSiC7j6LEL3kOCpQQz4VtYAMOfNUHOIS54y41ybbZamgWvKdo6gfwR18qs6xRsNVaBJWJYXCx3MDUdC9OUm1DM4NowGRfaNJn1HrvaxT4Z26iv0AtvpgyvH95z9OPL5-9XN7v9t-uvV5f7ne25KDsz8I6LznmlhGcOFNBejr1xRHS9GhXrwQtveyOtkTASYoeRVAaQfuyY8uwcvT_o3plJrynMJt3raIK-udzr1iOU8p5Q8ptW7LsDth78a4Nc9Bxyu8ksELesqSRKik6q4SnQapRz-gRVIRmTYmBdhfID1KaYcwJ_dEyJbsHQ_wdDH4JReW8fVmzjDO7IekwC-wcIxrzG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673376832</pqid></control><display><type>article</type><title>Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction</title><source>OUP_牛津大学出版社OA刊</source><source>MEDLINE</source><source>PubMed Central(OpenAccess)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Heinonen, Markus ; Guipaud, Olivier ; Milliat, Fabien ; Buard, Valérie ; Micheau, Béatrice ; Tarlet, Georges ; Benderitter, Marc ; Zehraoui, Farida ; d'Alché-Buc, Florence</creator><creatorcontrib>Heinonen, Markus ; Guipaud, Olivier ; Milliat, Fabien ; Buard, Valérie ; Micheau, Béatrice ; Tarlet, Georges ; Benderitter, Marc ; Zehraoui, Farida ; d'Alché-Buc, Florence</creatorcontrib><description>Identifying the set of genes differentially expressed along time is an important task in two-sample time course experiments. Furthermore, estimating at which time periods the differential expression is present can provide additional insight into temporal gene functions. The current differential detection methods are designed to detect difference along observation time intervals or on single measurement points, warranting dense measurements along time to characterize the full temporal differential expression patterns. We propose a novel Bayesian likelihood ratio test to estimate the differential expression time periods. Applying the ratio test to systems of genes provides the temporal response timings and durations of gene expression to a biological condition. We introduce a novel non-stationary Gaussian process as the underlying expression model, with major improvements on model fitness on perturbation and stress experiments. The method is robust to uneven or sparse measurements along time. We assess the performance of the method on realistically simulated dataset and compare against state-of-the-art methods. We additionally apply the method to the analysis of primary human endothelial cells under an ionizing radiation stress to study the transcriptional perturbations over 283 measured genes in an attempt to better understand the role of endothelium in both normal and cancer tissues during radiotherapy. As a result, using the cascade of differential expression periods, domain literature and gene enrichment analysis, we gain insights into the dynamic response of endothelial cells to irradiation. R package 'nsgp' is available at www.ibisc.fr/en/logiciels_arobas.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btu699</identifier><identifier>PMID: 25355790</identifier><language>eng</language><publisher>England: Oxford University Press (OUP)</publisher><subject>Bayes Theorem ; Bioinformatics ; Cells, Cultured ; Computer Science ; Dose-Response Relationship, Radiation ; Endothelial cells ; Gaussian ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation ; Genes ; Human Umbilical Vein Endothelial Cells - metabolism ; Human Umbilical Vein Endothelial Cells - radiation effects ; Humans ; Mathematics ; Neoplasms - genetics ; Neoplasms - radiotherapy ; Normal Distribution ; Oligonucleotide Array Sequence Analysis - methods ; Perturbation methods ; Radiotherapy ; Statistics ; Temporal logic ; Time Factors</subject><ispartof>Bioinformatics, 2015-03, Vol.31 (5), p.728-735</ispartof><rights>The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-a852562df996f3de9e147b4ad06249b934ef6fc4a7ca7eb00c8b0256e04b239f3</citedby><cites>FETCH-LOGICAL-c456t-a852562df996f3de9e147b4ad06249b934ef6fc4a7ca7eb00c8b0256e04b239f3</cites><orcidid>0000-0001-8165-2075 ; 0000-0002-6649-6286 ; 0000-0002-8353-0589 ; 0000-0001-6278-1680 ; 0000-0001-8249-9498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25355790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01154010$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinonen, Markus</creatorcontrib><creatorcontrib>Guipaud, Olivier</creatorcontrib><creatorcontrib>Milliat, Fabien</creatorcontrib><creatorcontrib>Buard, Valérie</creatorcontrib><creatorcontrib>Micheau, Béatrice</creatorcontrib><creatorcontrib>Tarlet, Georges</creatorcontrib><creatorcontrib>Benderitter, Marc</creatorcontrib><creatorcontrib>Zehraoui, Farida</creatorcontrib><creatorcontrib>d'Alché-Buc, Florence</creatorcontrib><title>Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Identifying the set of genes differentially expressed along time is an important task in two-sample time course experiments. Furthermore, estimating at which time periods the differential expression is present can provide additional insight into temporal gene functions. The current differential detection methods are designed to detect difference along observation time intervals or on single measurement points, warranting dense measurements along time to characterize the full temporal differential expression patterns. We propose a novel Bayesian likelihood ratio test to estimate the differential expression time periods. Applying the ratio test to systems of genes provides the temporal response timings and durations of gene expression to a biological condition. We introduce a novel non-stationary Gaussian process as the underlying expression model, with major improvements on model fitness on perturbation and stress experiments. The method is robust to uneven or sparse measurements along time. We assess the performance of the method on realistically simulated dataset and compare against state-of-the-art methods. We additionally apply the method to the analysis of primary human endothelial cells under an ionizing radiation stress to study the transcriptional perturbations over 283 measured genes in an attempt to better understand the role of endothelium in both normal and cancer tissues during radiotherapy. As a result, using the cascade of differential expression periods, domain literature and gene enrichment analysis, we gain insights into the dynamic response of endothelial cells to irradiation. R package 'nsgp' is available at www.ibisc.fr/en/logiciels_arobas.</description><subject>Bayes Theorem</subject><subject>Bioinformatics</subject><subject>Cells, Cultured</subject><subject>Computer Science</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Endothelial cells</subject><subject>Gaussian</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Human Umbilical Vein Endothelial Cells - metabolism</subject><subject>Human Umbilical Vein Endothelial Cells - radiation effects</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - radiotherapy</subject><subject>Normal Distribution</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Perturbation methods</subject><subject>Radiotherapy</subject><subject>Statistics</subject><subject>Temporal logic</subject><subject>Time Factors</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUk1vFSEUJUZjP_QnaFjq4lkYBhjcNVVbk5e40TVh4NJiZoYRGGP_ir9WyGtf4q4ruPeec-65yUHoDSUfKFHsYgwxLD6m2ZRg88VYNqHUM3RKmZC7fqD0-fFP2Ak6y_knIYQTLl6ik44zzqUip-jvJyhgS1hucQkz4BVSiC7j6LEL3kOCpQQz4VtYAMOfNUHOIS54y41ybbZamgWvKdo6gfwR18qs6xRsNVaBJWJYXCx3MDUdC9OUm1DM4NowGRfaNJn1HrvaxT4Z26iv0AtvpgyvH95z9OPL5-9XN7v9t-uvV5f7ne25KDsz8I6LznmlhGcOFNBejr1xRHS9GhXrwQtveyOtkTASYoeRVAaQfuyY8uwcvT_o3plJrynMJt3raIK-udzr1iOU8p5Q8ptW7LsDth78a4Nc9Bxyu8ksELesqSRKik6q4SnQapRz-gRVIRmTYmBdhfID1KaYcwJ_dEyJbsHQ_wdDH4JReW8fVmzjDO7IekwC-wcIxrzG</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Heinonen, Markus</creator><creator>Guipaud, Olivier</creator><creator>Milliat, Fabien</creator><creator>Buard, Valérie</creator><creator>Micheau, Béatrice</creator><creator>Tarlet, Georges</creator><creator>Benderitter, Marc</creator><creator>Zehraoui, Farida</creator><creator>d'Alché-Buc, Florence</creator><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8165-2075</orcidid><orcidid>https://orcid.org/0000-0002-6649-6286</orcidid><orcidid>https://orcid.org/0000-0002-8353-0589</orcidid><orcidid>https://orcid.org/0000-0001-6278-1680</orcidid><orcidid>https://orcid.org/0000-0001-8249-9498</orcidid></search><sort><creationdate>20150301</creationdate><title>Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction</title><author>Heinonen, Markus ; Guipaud, Olivier ; Milliat, Fabien ; Buard, Valérie ; Micheau, Béatrice ; Tarlet, Georges ; Benderitter, Marc ; Zehraoui, Farida ; d'Alché-Buc, Florence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-a852562df996f3de9e147b4ad06249b934ef6fc4a7ca7eb00c8b0256e04b239f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayes Theorem</topic><topic>Bioinformatics</topic><topic>Cells, Cultured</topic><topic>Computer Science</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Endothelial cells</topic><topic>Gaussian</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Human Umbilical Vein Endothelial Cells - metabolism</topic><topic>Human Umbilical Vein Endothelial Cells - radiation effects</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - radiotherapy</topic><topic>Normal Distribution</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Perturbation methods</topic><topic>Radiotherapy</topic><topic>Statistics</topic><topic>Temporal logic</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinonen, Markus</creatorcontrib><creatorcontrib>Guipaud, Olivier</creatorcontrib><creatorcontrib>Milliat, Fabien</creatorcontrib><creatorcontrib>Buard, Valérie</creatorcontrib><creatorcontrib>Micheau, Béatrice</creatorcontrib><creatorcontrib>Tarlet, Georges</creatorcontrib><creatorcontrib>Benderitter, Marc</creatorcontrib><creatorcontrib>Zehraoui, Farida</creatorcontrib><creatorcontrib>d'Alché-Buc, Florence</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinonen, Markus</au><au>Guipaud, Olivier</au><au>Milliat, Fabien</au><au>Buard, Valérie</au><au>Micheau, Béatrice</au><au>Tarlet, Georges</au><au>Benderitter, Marc</au><au>Zehraoui, Farida</au><au>d'Alché-Buc, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>31</volume><issue>5</issue><spage>728</spage><epage>735</epage><pages>728-735</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>Identifying the set of genes differentially expressed along time is an important task in two-sample time course experiments. Furthermore, estimating at which time periods the differential expression is present can provide additional insight into temporal gene functions. The current differential detection methods are designed to detect difference along observation time intervals or on single measurement points, warranting dense measurements along time to characterize the full temporal differential expression patterns. We propose a novel Bayesian likelihood ratio test to estimate the differential expression time periods. Applying the ratio test to systems of genes provides the temporal response timings and durations of gene expression to a biological condition. We introduce a novel non-stationary Gaussian process as the underlying expression model, with major improvements on model fitness on perturbation and stress experiments. The method is robust to uneven or sparse measurements along time. We assess the performance of the method on realistically simulated dataset and compare against state-of-the-art methods. We additionally apply the method to the analysis of primary human endothelial cells under an ionizing radiation stress to study the transcriptional perturbations over 283 measured genes in an attempt to better understand the role of endothelium in both normal and cancer tissues during radiotherapy. As a result, using the cascade of differential expression periods, domain literature and gene enrichment analysis, we gain insights into the dynamic response of endothelial cells to irradiation. R package 'nsgp' is available at www.ibisc.fr/en/logiciels_arobas.</abstract><cop>England</cop><pub>Oxford University Press (OUP)</pub><pmid>25355790</pmid><doi>10.1093/bioinformatics/btu699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8165-2075</orcidid><orcidid>https://orcid.org/0000-0002-6649-6286</orcidid><orcidid>https://orcid.org/0000-0002-8353-0589</orcidid><orcidid>https://orcid.org/0000-0001-6278-1680</orcidid><orcidid>https://orcid.org/0000-0001-8249-9498</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2015-03, Vol.31 (5), p.728-735
issn 1367-4803
1367-4811
1460-2059
language eng
recordid cdi_hal_primary_oai_HAL_hal_01154010v1
source OUP_牛津大学出版社OA刊; MEDLINE; PubMed Central(OpenAccess); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bayes Theorem
Bioinformatics
Cells, Cultured
Computer Science
Dose-Response Relationship, Radiation
Endothelial cells
Gaussian
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation
Genes
Human Umbilical Vein Endothelial Cells - metabolism
Human Umbilical Vein Endothelial Cells - radiation effects
Humans
Mathematics
Neoplasms - genetics
Neoplasms - radiotherapy
Normal Distribution
Oligonucleotide Array Sequence Analysis - methods
Perturbation methods
Radiotherapy
Statistics
Temporal logic
Time Factors
title Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20time%20periods%20of%20differential%20gene%20expression%20using%20Gaussian%20processes:%20an%20application%20to%20endothelial%20cells%20exposed%20to%20radiotherapy%20dose%20fraction&rft.jtitle=Bioinformatics&rft.au=Heinonen,%20Markus&rft.date=2015-03-01&rft.volume=31&rft.issue=5&rft.spage=728&rft.epage=735&rft.pages=728-735&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btu699&rft_dat=%3Cproquest_hal_p%3E1701475511%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673376832&rft_id=info:pmid/25355790&rfr_iscdi=true