Learning location-invariant orthographic representations for printed words

Neural networks were trained with backpropagation to map location-specific letter identities (letters coded as a function of their position in a horizontal array) onto location-invariant lexical representations. Networks were trained on a corpus of 1179 real words, and on artificial lexica in which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Connection science 2010-03, Vol.22 (1), p.25-42
Hauptverfasser: Dandurand, Frédéric, Grainger, Jonathan, Dufau, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 25
container_title Connection science
container_volume 22
creator Dandurand, Frédéric
Grainger, Jonathan
Dufau, Stéphane
description Neural networks were trained with backpropagation to map location-specific letter identities (letters coded as a function of their position in a horizontal array) onto location-invariant lexical representations. Networks were trained on a corpus of 1179 real words, and on artificial lexica in which the importance of letter order was systematically manipulated. Networks were tested with two benchmark phenomena - transposed-letter priming and relative-position priming - thought to reflect flexible orthographic processing in skilled readers. Networks were shown to exhibit the desired priming effects, and the sizes of the effects were shown to depend on the relative importance of letter order information for performing location-invariant mapping. Presenting words at different locations was found to be critical for building flexible orthographic representations in these networks, since this flexibility was absent when stimulus location did not vary.
doi_str_mv 10.1080/09540090903085768
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01152180v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753819601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-66ddbae698656f0a2ef6e7da1f04bbc9b8ff6207a5fe3a5f7445fec2a4baad613</originalsourceid><addsrcrecordid>eNqFkUtPxCAQgInRxHX1B3hrvBgP1aGllCZejPGZTbzomUxbcDFdWIH18e-lrvGgMYYECHwfw8wQsk_hmIKAE2gqBtCkUYKoai42yISWHHJgDdskk_E-TwDdJjshPAFABZROyO1MobfGPmaD6zAaZ3NjX9AbtDFzPs7do8fl3HSZV0uvgrLxkwqZdj5bemOj6rNX5_uwS7Y0DkHtfa1T8nB5cX9-nc_urm7Oz2Z5x0QRc877vkXFG8ErrgELpbmqe6QaWNt2TSu05gXUWGlVpqlmLO26AlmL2HNaTsnR-t05DjL9YIH-XTo08vpsJsezlFhVUAEvI3u4ZpfePa9UiHJhQqeGAa1yqyDrqhS04TCSBz_IJ7fyNiUiC-CiFKzmCaJrqPMuBK_0d3wKcuyD_NWH5NRrx9hUsgWmWg29jPg-OK892s6E35aMbzGZp_-a5d-BPwD5tKDZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206838476</pqid></control><display><type>article</type><title>Learning location-invariant orthographic representations for printed words</title><source>Alma/SFX Local Collection</source><creator>Dandurand, Frédéric ; Grainger, Jonathan ; Dufau, Stéphane</creator><creatorcontrib>Dandurand, Frédéric ; Grainger, Jonathan ; Dufau, Stéphane</creatorcontrib><description>Neural networks were trained with backpropagation to map location-specific letter identities (letters coded as a function of their position in a horizontal array) onto location-invariant lexical representations. Networks were trained on a corpus of 1179 real words, and on artificial lexica in which the importance of letter order was systematically manipulated. Networks were tested with two benchmark phenomena - transposed-letter priming and relative-position priming - thought to reflect flexible orthographic processing in skilled readers. Networks were shown to exhibit the desired priming effects, and the sizes of the effects were shown to depend on the relative importance of letter order information for performing location-invariant mapping. Presenting words at different locations was found to be critical for building flexible orthographic representations in these networks, since this flexibility was absent when stimulus location did not vary.</description><identifier>ISSN: 0954-0091</identifier><identifier>EISSN: 1360-0494</identifier><identifier>DOI: 10.1080/09540090903085768</identifier><identifier>CODEN: CNTSEU</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>artificial neural networks ; Cognitive science ; Information ; Language ; Learning ; Neural networks ; orthographic processing ; Reading ; supervised learning</subject><ispartof>Connection science, 2010-03, Vol.22 (1), p.25-42</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>Copyright Taylor &amp; Francis Ltd. Mar 2010</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-66ddbae698656f0a2ef6e7da1f04bbc9b8ff6207a5fe3a5f7445fec2a4baad613</citedby><cites>FETCH-LOGICAL-c482t-66ddbae698656f0a2ef6e7da1f04bbc9b8ff6207a5fe3a5f7445fec2a4baad613</cites><orcidid>0000-0002-2692-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01152180$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dandurand, Frédéric</creatorcontrib><creatorcontrib>Grainger, Jonathan</creatorcontrib><creatorcontrib>Dufau, Stéphane</creatorcontrib><title>Learning location-invariant orthographic representations for printed words</title><title>Connection science</title><description>Neural networks were trained with backpropagation to map location-specific letter identities (letters coded as a function of their position in a horizontal array) onto location-invariant lexical representations. Networks were trained on a corpus of 1179 real words, and on artificial lexica in which the importance of letter order was systematically manipulated. Networks were tested with two benchmark phenomena - transposed-letter priming and relative-position priming - thought to reflect flexible orthographic processing in skilled readers. Networks were shown to exhibit the desired priming effects, and the sizes of the effects were shown to depend on the relative importance of letter order information for performing location-invariant mapping. Presenting words at different locations was found to be critical for building flexible orthographic representations in these networks, since this flexibility was absent when stimulus location did not vary.</description><subject>artificial neural networks</subject><subject>Cognitive science</subject><subject>Information</subject><subject>Language</subject><subject>Learning</subject><subject>Neural networks</subject><subject>orthographic processing</subject><subject>Reading</subject><subject>supervised learning</subject><issn>0954-0091</issn><issn>1360-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPxCAQgInRxHX1B3hrvBgP1aGllCZejPGZTbzomUxbcDFdWIH18e-lrvGgMYYECHwfw8wQsk_hmIKAE2gqBtCkUYKoai42yISWHHJgDdskk_E-TwDdJjshPAFABZROyO1MobfGPmaD6zAaZ3NjX9AbtDFzPs7do8fl3HSZV0uvgrLxkwqZdj5bemOj6rNX5_uwS7Y0DkHtfa1T8nB5cX9-nc_urm7Oz2Z5x0QRc877vkXFG8ErrgELpbmqe6QaWNt2TSu05gXUWGlVpqlmLO26AlmL2HNaTsnR-t05DjL9YIH-XTo08vpsJsezlFhVUAEvI3u4ZpfePa9UiHJhQqeGAa1yqyDrqhS04TCSBz_IJ7fyNiUiC-CiFKzmCaJrqPMuBK_0d3wKcuyD_NWH5NRrx9hUsgWmWg29jPg-OK892s6E35aMbzGZp_-a5d-BPwD5tKDZ</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Dandurand, Frédéric</creator><creator>Grainger, Jonathan</creator><creator>Dufau, Stéphane</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>NAPCQ</scope><scope>7T9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2692-2084</orcidid></search><sort><creationdate>201003</creationdate><title>Learning location-invariant orthographic representations for printed words</title><author>Dandurand, Frédéric ; Grainger, Jonathan ; Dufau, Stéphane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-66ddbae698656f0a2ef6e7da1f04bbc9b8ff6207a5fe3a5f7445fec2a4baad613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>artificial neural networks</topic><topic>Cognitive science</topic><topic>Information</topic><topic>Language</topic><topic>Learning</topic><topic>Neural networks</topic><topic>orthographic processing</topic><topic>Reading</topic><topic>supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dandurand, Frédéric</creatorcontrib><creatorcontrib>Grainger, Jonathan</creatorcontrib><creatorcontrib>Dufau, Stéphane</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Connection science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dandurand, Frédéric</au><au>Grainger, Jonathan</au><au>Dufau, Stéphane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning location-invariant orthographic representations for printed words</atitle><jtitle>Connection science</jtitle><date>2010-03</date><risdate>2010</risdate><volume>22</volume><issue>1</issue><spage>25</spage><epage>42</epage><pages>25-42</pages><issn>0954-0091</issn><eissn>1360-0494</eissn><coden>CNTSEU</coden><abstract>Neural networks were trained with backpropagation to map location-specific letter identities (letters coded as a function of their position in a horizontal array) onto location-invariant lexical representations. Networks were trained on a corpus of 1179 real words, and on artificial lexica in which the importance of letter order was systematically manipulated. Networks were tested with two benchmark phenomena - transposed-letter priming and relative-position priming - thought to reflect flexible orthographic processing in skilled readers. Networks were shown to exhibit the desired priming effects, and the sizes of the effects were shown to depend on the relative importance of letter order information for performing location-invariant mapping. Presenting words at different locations was found to be critical for building flexible orthographic representations in these networks, since this flexibility was absent when stimulus location did not vary.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/09540090903085768</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2692-2084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0954-0091
ispartof Connection science, 2010-03, Vol.22 (1), p.25-42
issn 0954-0091
1360-0494
language eng
recordid cdi_hal_primary_oai_HAL_hal_01152180v1
source Alma/SFX Local Collection
subjects artificial neural networks
Cognitive science
Information
Language
Learning
Neural networks
orthographic processing
Reading
supervised learning
title Learning location-invariant orthographic representations for printed words
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20location-invariant%20orthographic%20representations%20for%20printed%20words&rft.jtitle=Connection%20science&rft.au=Dandurand,%20Fr%C3%A9d%C3%A9ric&rft.date=2010-03&rft.volume=22&rft.issue=1&rft.spage=25&rft.epage=42&rft.pages=25-42&rft.issn=0954-0091&rft.eissn=1360-0494&rft.coden=CNTSEU&rft_id=info:doi/10.1080/09540090903085768&rft_dat=%3Cproquest_hal_p%3E753819601%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206838476&rft_id=info:pmid/&rfr_iscdi=true