Computational homogenisation of periodic cellular materials: Application to structural modelling

The present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 2015-04, Vol.93, p.240-255
Hauptverfasser: Iltchev, A., Marcadon, V., Kruch, S., Forest, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue
container_start_page 240
container_title International journal of mechanical sciences
container_volume 93
creator Iltchev, A.
Marcadon, V.
Kruch, S.
Forest, S.
description The present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here, the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have been simulated, through the finite element method, on representative volume elements of such periodic stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their cores. A systematic comparison, between the results obtained from the fully meshed structures and those obtained from the structures whose core has been replaced with its HEM, allows us to address the limitations of the HEM-based approach and the boundary layer effects observed on finite structures. •Relevance of homogenisation approaches for the modelling of cellular structures.•Influence of the architecture on the anisotropy and shape of yield surfaces.•Identification of homogeneous equivalent laws to decrease computational costs.•Study of boundary layer and core size effects on the mechanical behaviour.
doi_str_mv 10.1016/j.ijmecsci.2015.02.007
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01149848v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740315000612</els_id><sourcerecordid>1770291700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-64ebf976590e7136b4b2d0a16487d77ca0f28c4bfd14480c25bbaf65987185bd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOH78BelSF60vadq0rhwGdYQBN7qOaZrOZGibmqQD_ntTq25dPbice-EdhK4wJBhwfrtP9L5T0kmdEMBZAiQBYEdogQtWxgTn5BgtAAjEjEJ6is6c2wNgBlm6QO8r0w2jF16bXrTRznRmq3rtvoPINNGgrDa1lpFUbTu2wkad8CETrbuLlsPQajmz3kTO21H60YahztSB1_32Ap00gVWXP_ccvT0-vK7W8ebl6Xm13MQyZaWPc6qqpmR5VoJiOM0rWpEaBM5pwWrGpICGFJJWTY0pLUCSrKpEE_CC4SKr6vQc3cy7O9HywepO2E9uhObr5YZPGWBMy4IWBxzY65kdrPkYlfO80276T_TKjI5jxoCUwRAENJ9RaY1zVjV_2xj4pJ_v-a9-PunnQHjQH4r3c1GFpw9aWR4I1UtVa6uk57XR_018AZwlksg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770291700</pqid></control><display><type>article</type><title>Computational homogenisation of periodic cellular materials: Application to structural modelling</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Iltchev, A. ; Marcadon, V. ; Kruch, S. ; Forest, S.</creator><creatorcontrib>Iltchev, A. ; Marcadon, V. ; Kruch, S. ; Forest, S.</creatorcontrib><description>The present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here, the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have been simulated, through the finite element method, on representative volume elements of such periodic stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their cores. A systematic comparison, between the results obtained from the fully meshed structures and those obtained from the structures whose core has been replaced with its HEM, allows us to address the limitations of the HEM-based approach and the boundary layer effects observed on finite structures. •Relevance of homogenisation approaches for the modelling of cellular structures.•Influence of the architecture on the anisotropy and shape of yield surfaces.•Identification of homogeneous equivalent laws to decrease computational costs.•Study of boundary layer and core size effects on the mechanical behaviour.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/j.ijmecsci.2015.02.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cellular ; Cellular architectures ; Computer simulation ; Condensed Matter ; Effective multi-axial behaviour ; Elasto-plastic properties ; Finite element modelling ; Homogenizing ; Materials Science ; Mathematical analysis ; Modelling ; Periodic homogenisation ; Physics ; Stacking ; Tubes</subject><ispartof>International journal of mechanical sciences, 2015-04, Vol.93, p.240-255</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-64ebf976590e7136b4b2d0a16487d77ca0f28c4bfd14480c25bbaf65987185bd3</citedby><cites>FETCH-LOGICAL-c379t-64ebf976590e7136b4b2d0a16487d77ca0f28c4bfd14480c25bbaf65987185bd3</cites><orcidid>0000-0002-8869-3942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020740315000612$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://minesparis-psl.hal.science/hal-01149848$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Iltchev, A.</creatorcontrib><creatorcontrib>Marcadon, V.</creatorcontrib><creatorcontrib>Kruch, S.</creatorcontrib><creatorcontrib>Forest, S.</creatorcontrib><title>Computational homogenisation of periodic cellular materials: Application to structural modelling</title><title>International journal of mechanical sciences</title><description>The present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here, the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have been simulated, through the finite element method, on representative volume elements of such periodic stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their cores. A systematic comparison, between the results obtained from the fully meshed structures and those obtained from the structures whose core has been replaced with its HEM, allows us to address the limitations of the HEM-based approach and the boundary layer effects observed on finite structures. •Relevance of homogenisation approaches for the modelling of cellular structures.•Influence of the architecture on the anisotropy and shape of yield surfaces.•Identification of homogeneous equivalent laws to decrease computational costs.•Study of boundary layer and core size effects on the mechanical behaviour.</description><subject>Cellular</subject><subject>Cellular architectures</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Effective multi-axial behaviour</subject><subject>Elasto-plastic properties</subject><subject>Finite element modelling</subject><subject>Homogenizing</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Periodic homogenisation</subject><subject>Physics</subject><subject>Stacking</subject><subject>Tubes</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOH78BelSF60vadq0rhwGdYQBN7qOaZrOZGibmqQD_ntTq25dPbice-EdhK4wJBhwfrtP9L5T0kmdEMBZAiQBYEdogQtWxgTn5BgtAAjEjEJ6is6c2wNgBlm6QO8r0w2jF16bXrTRznRmq3rtvoPINNGgrDa1lpFUbTu2wkad8CETrbuLlsPQajmz3kTO21H60YahztSB1_32Ap00gVWXP_ccvT0-vK7W8ebl6Xm13MQyZaWPc6qqpmR5VoJiOM0rWpEaBM5pwWrGpICGFJJWTY0pLUCSrKpEE_CC4SKr6vQc3cy7O9HywepO2E9uhObr5YZPGWBMy4IWBxzY65kdrPkYlfO80276T_TKjI5jxoCUwRAENJ9RaY1zVjV_2xj4pJ_v-a9-PunnQHjQH4r3c1GFpw9aWR4I1UtVa6uk57XR_018AZwlksg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Iltchev, A.</creator><creator>Marcadon, V.</creator><creator>Kruch, S.</creator><creator>Forest, S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8869-3942</orcidid></search><sort><creationdate>20150401</creationdate><title>Computational homogenisation of periodic cellular materials: Application to structural modelling</title><author>Iltchev, A. ; Marcadon, V. ; Kruch, S. ; Forest, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-64ebf976590e7136b4b2d0a16487d77ca0f28c4bfd14480c25bbaf65987185bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cellular</topic><topic>Cellular architectures</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Effective multi-axial behaviour</topic><topic>Elasto-plastic properties</topic><topic>Finite element modelling</topic><topic>Homogenizing</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Periodic homogenisation</topic><topic>Physics</topic><topic>Stacking</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iltchev, A.</creatorcontrib><creatorcontrib>Marcadon, V.</creatorcontrib><creatorcontrib>Kruch, S.</creatorcontrib><creatorcontrib>Forest, S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iltchev, A.</au><au>Marcadon, V.</au><au>Kruch, S.</au><au>Forest, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational homogenisation of periodic cellular materials: Application to structural modelling</atitle><jtitle>International journal of mechanical sciences</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>93</volume><spage>240</spage><epage>255</epage><pages>240-255</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><abstract>The present paper aims at investigating the homogenisation of cellular materials in view of the modelling of large but finite cellular structures. Indeed, computation costs associated with the complete modelling of such structures can be rapidly prohibitive if industrial applications are considered. The use of a homogeneous equivalent medium (HEM) for these cellular materials can be an efficient approach to address this issue, but it requires the calibration of relevant homogeneous equivalent laws (HELs). Here, the considered cellular materials are tube stackings. Various uni-axial and multi-axial loading cases have been simulated, through the finite element method, on representative volume elements of such periodic stackings. From these simulations, anisotropic compressible elasto-plastic constitutive equations have been identified for the HEL. The anisotropy of the yield surfaces is discussed depending on the pattern of the tube stacking (e.g. square or hexagonal). A validation of the identified laws is proposed by simulating uni-axial compression and simple shear tests on sandwich structures made of tube stackings for their cores. A systematic comparison, between the results obtained from the fully meshed structures and those obtained from the structures whose core has been replaced with its HEM, allows us to address the limitations of the HEM-based approach and the boundary layer effects observed on finite structures. •Relevance of homogenisation approaches for the modelling of cellular structures.•Influence of the architecture on the anisotropy and shape of yield surfaces.•Identification of homogeneous equivalent laws to decrease computational costs.•Study of boundary layer and core size effects on the mechanical behaviour.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmecsci.2015.02.007</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8869-3942</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 2015-04, Vol.93, p.240-255
issn 0020-7403
1879-2162
language eng
recordid cdi_hal_primary_oai_HAL_hal_01149848v1
source Elsevier ScienceDirect Journals Complete
subjects Cellular
Cellular architectures
Computer simulation
Condensed Matter
Effective multi-axial behaviour
Elasto-plastic properties
Finite element modelling
Homogenizing
Materials Science
Mathematical analysis
Modelling
Periodic homogenisation
Physics
Stacking
Tubes
title Computational homogenisation of periodic cellular materials: Application to structural modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20homogenisation%20of%20periodic%20cellular%20materials:%20Application%20to%20structural%20modelling&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Iltchev,%20A.&rft.date=2015-04-01&rft.volume=93&rft.spage=240&rft.epage=255&rft.pages=240-255&rft.issn=0020-7403&rft.eissn=1879-2162&rft_id=info:doi/10.1016/j.ijmecsci.2015.02.007&rft_dat=%3Cproquest_hal_p%3E1770291700%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770291700&rft_id=info:pmid/&rft_els_id=S0020740315000612&rfr_iscdi=true