Some of Sion’s heirs and relatives
If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde ( 1995 ) who gave a simple proof of the Elementary KKM theorem and showed that de...
Gespeichert in:
Veröffentlicht in: | Journal of fixed point theory and applications 2014-12, Vol.16 (1-2), p.385-409 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 1-2 |
container_start_page | 385 |
container_title | Journal of fixed point theory and applications |
container_volume | 16 |
creator | Horvath, Charles |
description | If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets
F
i
are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde (
1995
) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem. |
doi_str_mv | 10.1007/s11784-015-0225-4 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01142716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01142716v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQhxdRsFYfwFsOXjyszmQ3u8mxFG2Fgofqedm_NiVNZLcWvPkavp5PYkKkR2FghuH3DcxHyDXCHQLI-4QoS04BCwp5XlB-QiYoBFIpuTg9zqw8JxcpbQEE5Cgn5Gbd7XzWhWxdd-3P13fKNr6OKdOty6Jv9L4--HRJzoJukr_661Py-vjwMl_S1fPiaT5bUcuqfE-dMZ4zLbyXJgiw1lnoizPU2okimGBK7ionNRe2KirJJKIIlhfMApqSTcnteHejG_Ue652On6rTtVrOVmrYASLPJYoD9lkcszZ2KUUfjgCCGpSoUUnPFGpQonjP5COT-mz75qPadh-x7V_6B_oF7W1jUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some of Sion’s heirs and relatives</title><source>SpringerLink Journals - AutoHoldings</source><creator>Horvath, Charles</creator><creatorcontrib>Horvath, Charles</creatorcontrib><description>If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets
F
i
are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde (
1995
) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-015-0225-4</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of fixed point theory and applications, 2014-12, Vol.16 (1-2), p.385-409</ispartof><rights>Springer Basel 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</citedby><cites>FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11784-015-0225-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11784-015-0225-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01142716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Horvath, Charles</creatorcontrib><title>Some of Sion’s heirs and relatives</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets
F
i
are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde (
1995
) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.</description><subject>Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQhxdRsFYfwFsOXjyszmQ3u8mxFG2Fgofqedm_NiVNZLcWvPkavp5PYkKkR2FghuH3DcxHyDXCHQLI-4QoS04BCwp5XlB-QiYoBFIpuTg9zqw8JxcpbQEE5Cgn5Gbd7XzWhWxdd-3P13fKNr6OKdOty6Jv9L4--HRJzoJukr_661Py-vjwMl_S1fPiaT5bUcuqfE-dMZ4zLbyXJgiw1lnoizPU2okimGBK7ionNRe2KirJJKIIlhfMApqSTcnteHejG_Ue652On6rTtVrOVmrYASLPJYoD9lkcszZ2KUUfjgCCGpSoUUnPFGpQonjP5COT-mz75qPadh-x7V_6B_oF7W1jUg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Horvath, Charles</creator><general>Springer Basel</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20141201</creationdate><title>Some of Sion’s heirs and relatives</title><author>Horvath, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horvath, Charles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horvath, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some of Sion’s heirs and relatives</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>16</volume><issue>1-2</issue><spage>385</spage><epage>409</epage><pages>385-409</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets
F
i
are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde (
1995
) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s11784-015-0225-4</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-7738 |
ispartof | Journal of fixed point theory and applications, 2014-12, Vol.16 (1-2), p.385-409 |
issn | 1661-7738 1661-7746 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01142716v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics |
title | Some of Sion’s heirs and relatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20of%20Sion%E2%80%99s%20heirs%20and%20relatives&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Horvath,%20Charles&rft.date=2014-12-01&rft.volume=16&rft.issue=1-2&rft.spage=385&rft.epage=409&rft.pages=385-409&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-015-0225-4&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01142716v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |