Some of Sion’s heirs and relatives

If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde ( 1995 ) who gave a simple proof of the Elementary KKM theorem and showed that de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2014-12, Vol.16 (1-2), p.385-409
1. Verfasser: Horvath, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 1-2
container_start_page 385
container_title Journal of fixed point theory and applications
container_volume 16
creator Horvath, Charles
description If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde ( 1995 ) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.
doi_str_mv 10.1007/s11784-015-0225-4
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01142716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01142716v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQhxdRsFYfwFsOXjyszmQ3u8mxFG2Fgofqedm_NiVNZLcWvPkavp5PYkKkR2FghuH3DcxHyDXCHQLI-4QoS04BCwp5XlB-QiYoBFIpuTg9zqw8JxcpbQEE5Cgn5Gbd7XzWhWxdd-3P13fKNr6OKdOty6Jv9L4--HRJzoJukr_661Py-vjwMl_S1fPiaT5bUcuqfE-dMZ4zLbyXJgiw1lnoizPU2okimGBK7ionNRe2KirJJKIIlhfMApqSTcnteHejG_Ue652On6rTtVrOVmrYASLPJYoD9lkcszZ2KUUfjgCCGpSoUUnPFGpQonjP5COT-mz75qPadh-x7V_6B_oF7W1jUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some of Sion’s heirs and relatives</title><source>SpringerLink Journals - AutoHoldings</source><creator>Horvath, Charles</creator><creatorcontrib>Horvath, Charles</creatorcontrib><description>If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde ( 1995 ) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-015-0225-4</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of fixed point theory and applications, 2014-12, Vol.16 (1-2), p.385-409</ispartof><rights>Springer Basel 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</citedby><cites>FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11784-015-0225-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11784-015-0225-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01142716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Horvath, Charles</creatorcontrib><title>Some of Sion’s heirs and relatives</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde ( 1995 ) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.</description><subject>Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQhxdRsFYfwFsOXjyszmQ3u8mxFG2Fgofqedm_NiVNZLcWvPkavp5PYkKkR2FghuH3DcxHyDXCHQLI-4QoS04BCwp5XlB-QiYoBFIpuTg9zqw8JxcpbQEE5Cgn5Gbd7XzWhWxdd-3P13fKNr6OKdOty6Jv9L4--HRJzoJukr_661Py-vjwMl_S1fPiaT5bUcuqfE-dMZ4zLbyXJgiw1lnoizPU2okimGBK7ionNRe2KirJJKIIlhfMApqSTcnteHejG_Ue652On6rTtVrOVmrYASLPJYoD9lkcszZ2KUUfjgCCGpSoUUnPFGpQonjP5COT-mz75qPadh-x7V_6B_oF7W1jUg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Horvath, Charles</creator><general>Springer Basel</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20141201</creationdate><title>Some of Sion’s heirs and relatives</title><author>Horvath, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-dbbe43a6ee7bf60ccdc0dc0431aad65fbfb84d9d7a46c959737116fc453c01b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horvath, Charles</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horvath, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some of Sion’s heirs and relatives</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>16</volume><issue>1-2</issue><spage>385</spage><epage>409</epage><pages>385-409</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>If one adds one extra assumption to the classical Knaster– Kuratowski–Mazurkiewicz (KKM) theorem, namely that the sets F i are convex, one gets the “Elementary” KKM theorem; the name is due to A. Granas and M. Lassonde ( 1995 ) who gave a simple proof of the Elementary KKM theorem and showed that despite being “elementary,” it is powerful and versatile. It is shown here that this Elementary KKM theorem is equivalent to Klee’s theorem, the Elementary Alexandroff– Pasynkov theorem, the Elementary Ky Fan theorem and the Sion–von Neumann minimax theorem, as well as a few other classical results with an extra convexity assumption; hence the adjective “elementary.” The Sion–von Neumann minimax theorem itself can be proved by simple topological arguments using connectedness instead of convexity. This work answers a question of Professor Granas regarding the logical relationship between the Elementary KKM theorem and the Sion–von Neumann minimax theorem.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s11784-015-0225-4</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1661-7738
ispartof Journal of fixed point theory and applications, 2014-12, Vol.16 (1-2), p.385-409
issn 1661-7738
1661-7746
language eng
recordid cdi_hal_primary_oai_HAL_hal_01142716v1
source SpringerLink Journals - AutoHoldings
subjects Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
title Some of Sion’s heirs and relatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20of%20Sion%E2%80%99s%20heirs%20and%20relatives&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Horvath,%20Charles&rft.date=2014-12-01&rft.volume=16&rft.issue=1-2&rft.spage=385&rft.epage=409&rft.pages=385-409&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-015-0225-4&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01142716v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true